FED2 ADVANCED WORKBENCH MANUALUpdated 24 September 2016
PART 1 - EXPLANATIONS AND THEORY
1.1 INTRODUCTION
When you promote to Technocrat, you can add events to your planet to make interesting things happen, and add objects that players can pick up and manipulate.
To add these things, you use two more programs which are part of the Fed2 Workbench - the event editor and the object editor.
At this point, I need to issue a warning. Unlike drawing a map with the map editor, writing events is not something you can figure out on your own. You can't write events without reading this manual - if you try, you will get into a mess. So the instruction RTFM most definitely applies.
1.2 WHAT'S IN THIS MANUAL
A lot. It's a big manual. But don't be daunted by its size - you don't have to read it all cover to cover. Here's how the sections break down:
Part 1 of the manual explains some of the things you need to know about before you can start writing events: what events are, what makes them happen, what goes into an event and how to install and run the event and object editors. This is essential reading before you start to write events.
Part 2 explains the mechanics of using the event editor to put together some events. This is essential too.
Part 3 is where you actually learn how to write some simple events for your planet - it is a tutorial which leads you through the process step-by-step. You need to read this section in order and work through the lessons, but you can stop at any time you think you have learned everything you need.
Part 4 explains how objects work in Fed2, and how to use the object editor to add some to your planet. It also tells you how to add a talking mobile to your planet, and to make a mobile move around. This is getting into the advanced lessons so you don't have to tackle this stuff, but you will need it if you want to go any further.
Part 5 teaches you how to make objects behave in different ways using events. It's more advanced stuff and will be necessary if you want to go on to design puzzles.
Part 6 covers more advanced techniques using events, including writing puzzles. If you want to tackle this you need to have read everything that comes before.
1.3 WHAT ARE EVENTS?
Events are lists of instructions to the game telling it to do something, usually in response to the actions of a player. You do not have to be a programmer to write events - you use a scripting language designed to be used by non-techies. However, you need to be able to think logically, and you need to work your way through the lessons in the tutorial methodically.
Not everyone can be bothered to do this, and if you think it sounds a bit too much like hard work, you can ask Hazed to write some events for you, by paying her some slithy toves. See http://www.ibgames.net/fed2/workbench/objects/index.html for the details.
WHAT YOU CAN DO WITH EVENTS
Many of the things that you can do in the Solar System are done with events. The hovercab and monorail on Earth, the cat on Mars, role-playing objects like the top hat and tap shoes, the conversations you can have with mobiles like Diesel and Tracey, puzzles like the Magellan Society Treasure Hunt and the Graveyard puzzle - all these things are done with events, and are therefore an indication of the things you can do with events on your planet.
EVENT TRIGGERS
An event is an instruction to the game, that says, "When Something happens, do This." "Something" is the trigger mechanism for the event - it could be a player walking into a location, or picking up an object, or meeting a mobile.
If "Something", the trigger, never happens then the event will never happen.
"This" is what the event will actually do - it could move the player to a different location, or send her some text, or change one of her stats, or create an object, or kill her, or... well, events are so flexible that they can make just about anything you can think of happen!
So writing an event is in two pieces. You need to tell the game what you want the event to do, by using the Event Editor to actually write the events; and you need to tell the game what will make the event happen - what pulls the trigger to fire off the event - by setting the event trigger on the location, or object, or mobile. You'll learn more about event triggers as you go through the tutorial.
BITE-SIZED PIECES
When you are writing events for a planet it pays to do a small amount of work at a time, submitting your planet for loading so you can check what you have done. This applies even if you have been working on events for a while and are pretty confident that you know what you are doing.
The more you do at once, the more chance there is of errors creeping in; the more difficult it is to check everything and find those errors; and the more difficult to figure out exactly what you have done wrong, and what needs fixing.
Don't be tempted to write all the events for your planet in one go - you will likely get into a terrible muddle!
Even an expert like Alan doesn't try to write a whole program in one go - he does it one bit at a time.
When you are a beginner it is particularly important not to try to rush ahead. Tackle the lessons one at a time and get the files put into the game after each lesson so you can check that the events you have written do what you want them to do.
Keep a notebook next to your keyboard so you can jot down thoughts and ideas you have while writing an event, that you will want to return to later.
FILENAMES
When you write events they are saved in an event file, and objects in an object file. The files must have the same names as the map to which they belong. For example, planet Bodville, with a map called bodville.loc, will have an event file called bodville.xev and and an object file called bodville.xob.
As a Technocrat you may have two planets, as well as your space map, and each map that you write events for will have its own object file. Yes, you can have events in space - just about all of the things you can do on a planet can be done in space, too.
USING MESSAGES IN EVENTS
Many events send text to the player to explain to her what's happening. This text can be stored in the message file. Before you start to learn how to write events, you need to know how to write messages. If you have added any no-exit messages to your planet then you have already learned how messages work.
However, if you did not do that then you need to stop now, and go back to the Basic Workbench Manual. Read the part that tells you about writing messages, and make sure you understand how to use the message editor. You will need to know this stuff before you go any further!
1.4 COMPONENTS OF AN EVENT
EVENT CATEGORIES, SECTIONS AND NUMBERS
When you learned how to write messages so you could add no-exit messages to your planet, you learned about the way the message file was split into categories and sections. The event file is split up in the same way. This allows you to keep events that relate to the same thing together.
You can think of an event as a piece of paper, on which you write an instruction to the game about what you want the event to do. A section is like a cardboard folder which you put one, or more, of the events into. A category is like a drawer which you put as many sections as you want into, and the whole events file is like the filing cabinet which has as many categories in it as you need.
As with messages, in each section, events are automatically numbered sequentially, starting at 1. When you create a new event, it is given the next number in the sequence for that section.
You cannot create an event without first setting a category or section.
Don't just shove all of your events into the same category/section - split them into logical collections, and give the categories/sections sensible names that describe what they are intended for. This will make it easier for you to find a specific event if you need to come back and edit it later.
Category and section names must be all in lower case, and with no spaces in them. They must only contain letters and numbers, and they must start with a letter.
When an instruction in an event says that the game should go to another event - known as calling an event - if you just use the event number then it is assumed to be in the same section. To call an event from another section or category, you specify the full information in the format category.section.# - for example moves.keepout.1 - just like you did when you added one of your no-exit messages to a location.
COMMENTS
The event editor allows you to write a comment for each event as an aide memoire. A comment is a note about what the event is and how it works. This section is ignored when the event is executed - it's not even loaded into memory. It is entirely for your benefit, to remind you what the event is supposed to do.
You type your comment into the box at the top of the screen. Comments can be up to 120 characters.
It's not necessary for you to type anything at all into the comments section, but you'd be a fool if you did leave it blank! You should describe exactly what the event is meant to do - what the trigger is, which object or location it's linked to, and so on. Otherwise in 3 months time when you come back to make some changes, you won't remember which event was supposed to do what!
I repeat, you are strongly advised to type in detailed comments. Ignore this advice at your peril!
Here is an example of the sort of detail you should put into a comment:
Orchestra Pit - loc 154 - enter trigger. Checks if player is carrying the bassoon; if not, she will be thrown out.
SYSTEM SCRIPTS
An event is a list of instructions detailing what you want to happen. The instructions take the form of system scripts, which do the work involved in events - moving a player to a new location, sending a message, checking the value of a stat, and so on. You specify exactly how the scripts will work by setting parameters which define who or what the script effects, and exactly what happens.
These scripts have names that indicate their function. The names are pretty logical and describe what the script does, but you don't have to remember the exact name of each script, because the event editor does that for you. You choose which script you want to use from a list in the event editor. This puts the template for the script into the centre of the screen, with spaces for you to fill in the details. In some of these you select choices from a drop-down box; in others you type in information such as a location number, a message, or the number of another event.
An event can contain more than one script, which means it can do more than one thing.
SCRIPT RESTRICTIONS
There are a few scripts that are restricted to staff only. When you write a script in the editor, it will tell you if the script level is for Planet Owner or Staff. The editor won't stop you using staff scripts but we won't load your event file into the game if you use them.
EVENT PARAMETERS
Each script has parameters which define exactly what the script does, and you have to provide that information. With some parameters you can put what you like in them, such as some text; others only want information of a certain type such as a location number, and the editor will complain if it doesn't get it in the right format. Then there are parameters where you choose between a few options using a drop-down menu.
As you work through the lessons in this manual, I will explain how the different parameters work.
1.5 WRITING OBJECTS FOR FED2
An object is a thing, an item, that a player finds, buys from a shop, or otherwise gets hold of. Objects in Fed2 are powered by events - they don't do anything unless you write the instructions for them. In general, therefore, it's pointless adding objects to your planet unless you write some events to go with them, which is why the event tutorial doesn't teach you about objects for a while.
1.6 RUNNING THE ADVANCED WORKBENCH TOOLS
The Advanced Workbench tools come with the Workbench installation that you downloaded when you first designed your planet.

The filenames of the two advanced editors are as follows:
· Event Editor - EvEdit.exe
· Object Editor - ObjEdit.exe
You can run both of these programs at the same time as the map and message editors - in fact the most effective way to write events is to run all four editors at once.
PART 2 - USING THE EVENT EDITOR
2.1 INTRODUCTION TO THE EVENT EDITOR
This part of the manual deals with the mechanics of using the event editor and explains how to put an event together. How to make an event do what you want is covered in the tutorial - this part is simply concerned with the technical side of using the editor. Don't panic if you get confused by this section - all will become clear once you actually start writing events by following the lessons in the next part.
So fire up the event editor and let's get started!
2.2 THE SCREEN
The event editor window has a number of panels to it:
Down the left hand side is a list of all the system scripts which are available to you.
The center of the form is where you actually write the events. The top shows the current category and section, a button to create a new cat/sec and the number of the event you are working on. Under that is the comment for that event.
The main part of the screen has several different pages, which you switch between by clicking on the notebook tabs underneath:
· Event - this is the main page where you construct an event by defining the scripts that give the game its instructions
· File - a list of the categories, sections and events contained in the file you are working on
· Listing - a list of all the events in the file, so you can scroll through looking at a different event than the one you are working on. You can also copy the text out of the listing and into another program
At the bottom is a panel that gives the details of completed scripts that make up the event you are working on. You can resize the program window which will increase the size of this panel.
You can change the font and text size using 'Choose Font' from the 'Tools' menu.
The editor will remember the window size and font settings.
2.3 PUTTING AN EVENT TOGETHER
Here is the sequence of steps you go through to put an event together:
1) Type the category and section names you want to use into the panels at the top of the screen. Remember, the names should be one word only and all in lower case.
2) Click the 'Create Cat/Sec' button to set up the first event in the section.
3) Write a comment describing what the event will do.
4) Click on the name of the script you want to use, from the list on the left of the screen.
5) Fill in the information for the parameters.
6) Click the 'Add Script' button to add the script to the event. The completed script is placed in the panel at the bottom of the screen.
7) If you want the event to include more than one script, go back to Step 4. Rinse and repeat.
8) When you're done adding scripts to the event, click the 'Next Event' button to write the next event.
9) Normally you'd save the file at this point, but don't do it now - wait till you've written a real event!
SCRIPT REFERENCE
If you double-click on one of the scripts in the list on the left of the screen, your browser will go to the script reference page on our website. This is a reminder of how the script works and is intended for those who already know how to write events but just need to refresh your memories.
Beginners please note: it is no substitute for working through the lessons in this manual!
2.4 FILE MANAGEMENT FOR EVENTS
With the other editors, there are two levels of file management - the current location or message being worked on, and the whole file. The event editor adds a third layer. Since an event can contain more than one script, there is also the current script you are working on.
THE CURRENT SCRIPT
The current script is the one that is displayed on the main part of the screen. When you click on one of the script names, to build a new script, that becomes the current script. When you have finished filling in the parameters, click 'Add Script' to add it to the current event.
You can click on an existing script that is shown at the panel at the bottom of the screen, and that script will become the current script. You can then edit the script if you need to change it. Click 'Update Script' to replace the old version of the script with the changed version.
If you make some changes to a script and then click 'Add Script' then the changed version will be put into the event as a new script, after the existing ones; the old version of the script will remain unchanged.
THE CURRENT EVENT
The current event is the one that is displayed on screen, with the scripts it contains listed in the panel at the bottom of the screen. As you make changes, the event is automatically saved to the file held in the computer's memory.
When you have finished building the scripts in the event, click 'Next Event' to clear the screen and increment the event number so you can write the next event in the section.
THE FILE DISPLAY
To look at the events in the file you are working on, click on the 'File' notebook tab. This page lists all the categories in the file. Click on a category to see all the sections in that category; click on a section and all the events are listed. The event number is shown together with the first part of the comments (another reason why comments are so important!)
Click on one of the events, and the scripts will display in the panel at the bottom of the window. The event then becomes the current event. Click on one of the scripts and the editor switches to the event page, with that script as the current script.
EDITING AN EVENT
Changing an Event
To make a change to an existing event, find it in the file display and then click on one of the scripts which are displayed in the bottom panel. This will put that script back into the event page, where you can make changes to the parameters. When you have finished editing that script, click 'Update Script' to save the changes you have made to the script.
To change other scripts in the same event, click on one of the other scripts displayed in the panel and make your changes to that one.
Adding New Scripts to an Event
You can also add new scripts to the current event, by clicking on the script name as normal.
Deleting a Script from an Event
To delete a script from the current event, click on it so it is the current script, then select 'Delete Script' from the 'Edit' menu.
Re-ordering the Scripts in an Event
To rearrange the scripts in an event so they are in a different order, click on the script you want to move in the panel at the bottom of the window, then click on the 'Move Up' and 'Move Down' buttons to the right of the panel to move it up or down the list.
Clearing a Script
If you are halfway through writing a new script and you realize you are doing it wrong, click the 'Clear Script' button to remove all the information from the parameters. Then you can start again.
Saving Changes to the Event
Any changes you make to the event are automatically saved as you work on it.
CLONING AN EVENT
[If you want to build an event which is similar to one that already exists, you will be able to but it's not yet implemented.]
DELETING AN EVENT
You delete the current event from the File Display page. Click on the event you want to delete, then use 'Edit|Delete Event'.
Note that this will leave a 'hole' in the event numbering for that section. The game itself will not be affected by gaps in the numbering, and neither will the editor - it will just ignore the gap, and continue allocating new events with numbers higher than the last used. However, it makes it a bit more difficult to keep track of what you are doing, so I recommend you avoid leaving holes in the numbering.
DELETING A CATEGORY OR SECTION
To delete a category from the event file, highlight the category on the file display, and select 'Edit|Delete Category'. The entire category, and all the sections and events it contains, will be removed from the file.
To delete a section from the event file, highlight the section and select 'Edit|Delete Section'. The section, and all the events it contains, will be removed from the category.
SAVING AND LOADING AN EVENT FILE
The 'File' menu has options to save the event file you are working on to disk, to load a new file, to save the file under a different name, and to start a new file. These are all self-explanatory.
LISTING
If you want to refer to one part of your event file while you work on another part, you can display all the events in the file on the Listing page. Click on the 'Listing' notebook tab to access it. It automatically updates when you switch to this page.
Category names are shown in blue, section names in green, and event numbers in red to help you scan through the listing.
You can use Ctrl-C to copy some or all of the text from the listing page, and then paste it into another program. Ctrl-A will select all of the events on the page.
EXITING THE EVENT EDITOR
To close down the Event Editor simply close the window or use 'File|Exit'. If your currently displayed event has not been added to or replaced in the file you will be prompted to do so; if the event file hasn't been saved, you'll be prompted about that, too.
PART 3 - EVENT TUTORIAL
3.1 INTRODUCTION
This section of the manual is where you actually learn how to write some simple events. It starts with a very basic event that is easy to understand and to use, and then builds on that to move onto more complex things.
It takes the form of step-by-step lessons, each one of which introduces you to new things that can be done. As you work through the lessons, you will be told to visit particular places in the Solar System to see how the events you are reading about work in practice.
You need to work through the lessons in this part of the manual in the order they appear, because each one builds on what you have learned about previously. If you try to jump in and do something complicated right away, you will get confused - don't try to run before you can walk. Or slither.
If you find anything in the tutorial that you don't understand, or you need some more explanation, email feedback@ibgames.com to ask for help, or talk to Hazed in the game.
3.2 FIRST TRY AT WRITING EVENTS
SENDING EXTRA TEXT
The first event I'm going to teach you is just about as simple as it gets. It's an event that does one thing, so uses only one system script. It is: sending an extra sentence of text when a player walks into a location.
WHEN TO USE THIS EVENT
There are several reasons to write an event that does this:
· You could send a greeting to a player as she enters a room - some text which won't be seen if the player types 'LOOK'
· You could make sure the player sees some important information even if she has full descriptions turned off
· You could add extra text if the 1,000 characters in a location description are not enough
As an example, take a look at the Starship Cantina on Earth. When you walk into the room, you are sent a message that says:
As you take your place at the bar, a droid lurches past you drunkenly and collapses in a heap in the doorway.
Actually it says a bit more than this but for this lesson we just want to use a short sentence.
HOW THE EVENT WORKS
The event is a simple instruction to the game to send some text to the player. In this case, it is triggered by the player walking into the room and will happen after the location information has been sent. The trigger to make this happen is the In Location trigger on the location itself.
There's nothing complex about this trigger - the event will happen every time a player walks into the location, or logs on into the location, or teleports there, or is moved there by another event. There's an explanation of the different location triggers later in this lesson.
The system script that does the actual work is message. This script lets you send text to the player's screen.
The text to be sent can be taken from the message file (which you should already know about) or can be typed into the script itself, which is what we are going to do here.
CATEGORIES AND SECTIONS
Before you can write an event, you need to specify a category and section in which to place the event.
Players never see the names you give to categories and sections so it's up to you what you call them, and how you split the events up. But you are strongly advised to use sensible names that describe what the events are intended to do. Take a look at the examples that are given throughout this tutorial. Remember - all lower case and no spaces.
WRITING THE EVENT
This section is a complete step-by-step guide to writing your first event.
To produce an event using this system script, fire up the Event Editor. Since this is the first event I am teaching you about, I'll assume that you haven't already written any events, so won't already have an event file for your planet.
These instructions mirror the ones in the previous section, only this time I'm telling you which script to use and what to type for the parameters.
1) Type the category and section names you want to use in the panels at the top of the screen - all in lower case, no spaces. For this event, I used category extras and section cantina - you should pick something that suits the room that you're putting the event on.
2) Click the 'Create Cat/Sec' button to set up the first event in the section.
3) Write a comment describing what the event will do. Make it a habit to write full and detailed comments for your events. Describe what the event is supposed to do, and how it is triggered. Include the location number where it is meant to happen. Here's an example:
Cantina extra text - loc 454 - In Loc trigger.
4) Look down the list of scripts on the left of the editor until you find the one called message (they are in alphabetical order) and click on it.
5) The editor will put that script on the screen, with the boxes for you to type in the parameters:
· Low
· High
· Message text
· To whom
For now, all you need to do is to click on the "Message text" box and type in the text you want to send. Note that there is a limit on the message text - it cannot exceed 160 characters. So you shouldn't be too verbose when coming up with the message. You can't have any line breaks in the text - it is sent all as one paragraph.
Ignore all the other parameters - I'll explain what they do in a moment.
6) When you're done, click 'Add Script'. The editor will construct the script from the parameters you have set and place it in the panel at the bottom of the window.
7) And now, save the file to disk. Select 'File|Save as...' and use the file selector to find the directory or folder where you saved your map file. Type in the name for the file and click on OK or press return.
The name you give to the event file must be the same as the name for the map file. For example, if your map is called bodville.loc then the event file must be called bodville.xev. You don't have to type in the .xev, though, the editor adds that automatically.
Congratulations, you have written your first event! You can now take a look at it in the editor to check that you got it right.
Click on the 'File' tab to switch to that page. In the first column you will see the name of the category; click on it and you will see the name of the section in the middle column; click on that, and your event will appear on the right. The event number and the first part of the comments will show, which is another good reason to use comments!
Click on the event and the script will display in the panel at the bottom of the window. Take a look at it and check that you didn't make any typos.
If you want to make any changes, click on the script. The editor will put it back on the event page, with the script parameters on the screen. Make what changes you need to then click on 'Update Script'. Don't forget to save the file!
USING TEXT IN SCRIPTS
When you type some text directly into the parameter of a script, as in the message script, you can include most punctuation marks in the text - however, you can't use pointy brackets < or > because they are used as markers for the start and end of the script.
If you use an ampersand - & - or single or double quotes - ' and " - they will be converted into a code in your event. The game will correctly decode and display it, and it'll look fine in the editor itself, but but it will bump up the length of your text by a few characters.
If you want to send more text than will fit in the 160 characters, or if you want to send more than one paragraph of text, you can use the script more than once. However, for large amounts of text it is better to use paragraphs from the message file, which is explained in a couple of lessons.
THE OTHER PARAMETERS
The message script has other parameters which in this example you left alone. Here's an explanation of what they do and when you would change them.
Low and High Messages
The "Low" and "High" parameters refer to paragraphs of text from the message file. I will explain how to use these parameters in a couple of lessons.
Who the Event Affects
The options for the "To whom" parameter are:
· individual - the individual player that triggered the event
· room - all of the players in the room
· room_ex - all of the players in the room, except for the player that triggered the event
This parameter defaults to "individual". In most cases that's the way you should leave it. You will learn in the lessons to come when you change it.
SETTING THE TRIGGER
I've given this a section all of its own in the lesson, because although setting the trigger is very simple, it is everso easy to forget to do it - and without the trigger, your event isn't ever going to work!
So now fire up the Map Editor, load in your map file, and find the location where you want this event to happen. Click on it to make it the current location, then click the 'Properties and Events' tab of the information panel. At the top are the three event triggers for locations. This event is going on the third one listed, "Call when in loc".
Type in the category, section and event number - which for our example is extras.cantina.1 - then click on OK to confirm the change and save the map file.
You're done!
Now you can submit the files by mailing them to feedback@ibgames.com (don't forget to put Fed2 somewhere in the subject line), wait for them to be linked into the game, then see your event in action.
THE ENTER TRIGGER
The trigger used for this event makes the event happen when the player comes into a room, either by walking in or teleporting in, by logging on in the room, or by being moved there by another event. Its short name is the "In Location" trigger because it happens when the player has arrived in the room, after the location description has been displayed.
As an alternative, you can use the "Call on entering the location" trigger - or "Enter" trigger for short. This trigger is a threshold or gateway trigger. It happens on the junction between two locations - after the player has left the location she was in previously, but before she arrives in the new location. If the player logs on in a room, teleports there or is transported there by some other means, events in the "Enter" trigger will not be triggered - only if the player walks in, crossing the threshold.
If an event sends some text, then using the "Enter" trigger will result in the text being displayed before the new location description, instead of after. You can see this in action by visiting one of the shops on Earth, Gallagher's. When you walk in, you see this:
As you walk through the door, your skin tingles as some kind of security scan is performed...
Gallagher's
This very exclusive shop sells ferbligs, thasmodins and other similar luxury items. Pride of place is given to a hand-crafted wotchax, complete with ratchets and wirrals.
Everything is way beyond your price range, and the elegant sales assistant looks down her nose at you, making it clear you are not welcome.
The message appears before the location description. The event that sends the text is exactly the same as the one on the Cantina; the only difference is the trigger it is put on.
WHEN TRIGGERS DON'T WORK
One place where an event won't necessarily be triggered is on the landing pad of your planet. When the player lands her shuttle on the planet, neither the Enter nor the In Room events will run. Any events on those triggers will only happen when she walks back into the location.
This means that if you want an event to welcome the player to your wonderful planet, you can't put it on the landing pad - you need to have it on another location.
ALTERNATIVE TRIGGERS
There is one other trigger on a location which I might as well explain now.
The non-move trigger is for events you want to happen if the player moves in a direction which has no exit. The no-exit message on a location which you already know about just sends some text, but with an event on this trigger you could also make something else happen - move the player elsewhere, knock off some stamina, or even kill her!
An event on this trigger overrides the game's standard no-exit message, and also overrides any no-exit message you have set on the location.
3.3 EDITING YOUR EVENT
This lesson teaches you how to load an event file, select one of the events, and make changes to it. It also gives a bit of technical detail about how to spot errors in your events.
Now you have written one simple event, you probably got it right first time - but just in case you did make a typo in the messages, here's what you do to edit an existing event:
1) Load the event file into the editor.
2) On the File page, click on the category and section, and then click on the event you want to edit.
3) Look at the panel at the bottom of the screen where the scripts in the event are listed. Click on the script you want to edit.
4) The editor will switch to the Event page and the parameters will be filled in with the information for the script. Edit the parameters until they say what you want.
5) Click 'Update Script' to save the changes to your script.
6) If you want to change any other scripts in the event, click on one, edit the parameters, and click the 'Update Script' button again.
7) When you're done, save the file.
8) If you want to write another event in the same section, click the 'Next Event' button.
READING SCRIPTS
When you click on a script to put it onto the main screen you can see what's contained in each parameter. But if you want to check several events, it is a bit long-winded to have to click on each one in turn. A quicker way is to look at the completed script in the panel at the bottom of the screen. Even quicker than that is to look at the Listing page.
Here's what a typical script looks like:
message script: type text: to whom individual: text 'As you take your place at the bar, a droid lurches past you drunkenly and collapses in a heap in the doorway.'
This is in fact the script from the Cantina, which we used an example in the last lesson. Each paramater is listed in turn, separated by a colon.
The first part of the script is the name of the script. In this case it's a message script. This is followed by the names of the parameters the script contains, and what information you have supplied for the parameters:
type text
This is the type of message, which is text that you typed directly into the script. If the script was sending paragraphs from the message file, this parameter would either say single (for one paragraph) or multi (for more than one).
to whom individual
This is person the text should be sent to, which is set to individual. It might also say room or room_ex.
Finally the script contains the text that you typed in for the actual message.
In later lessons you will learn other scripts and I'll show you what they look like once they are filled in, so you will be able to identify the different parameters.
3.4 VARIATIONS ON YOUR FIRST EVENT
This lesson explains some of the different ways to send text to the player: using the message file, sending a message to the room, sending a message to a specific location, and including the player's name in the message.
USING TEXT FROM THE MESSAGE FILE
Instead of typing the text which you want to send to the player directly into the script, you can put the text into the message file, and have the script specify which paragraph or paragraphs to send.
You should already know how message files work, since the text for a location's no-exit message comes from there. But to recap: there is one message file per map, and the paragraphs in the file are split into categories and sections and are then numbered. To call a paragraph, simply type the category, section and paragraph number, ie extras.public.1. If the category and section used in the message file are the same as those used in the event file, then just type the message number and the editor will fill in the rest for you.
With a message script you can send one paragraph of text by giving a single number, or more than one by specifying the start and end of the numbers of the range of paragraphs - the paragraphs have to have consecutive numbers in the file, and all come from the same section.
If you are sending one paragraph, put the category, section name and event number into the "Low" parameter. The script will look like this:
message script: type single: to whom individual: low extras.public.2
If you are sending more than one paragraph, put the message details into both the "Low" and "High" parameters. The script will look like this:
message script: type multi: to whom individual: low extras.public.3: high extras.public.6
If you use the same category/section names in the event file and the message file, you can save yourself a bit of typing. Just type in the event number, and the editor will automatically put in the category/section.
There are a number of reasons why you would want to send text from the message file, rather than typing the text into the script:
· There's a limit to the length of a script, which is much shorter than the limit on the length of a paragraph in the message file
· Using the message file, you can send more than one paragraph of text.
· You can use the same message in different events
· It is also a lot easier to proof-read text in the message file, rather than to pick out the bits of text scattered here and there in an event file - you can print the whole message file out for proofing
But mostly it comes down to a matter of choice; whichever method you feel comfortable with.
SENDING MESSAGES TO THE ROOM
An alternative use of the message script is to send a message to all the players in the room. The actions of one player (the person who triggers an event) can have an effect that is visible to everyone present - for example, if a player pulls a lever which opens a trapdoor in the floor, then it makes sense for everyone to be told about it.
The script works exactly as before, except that you set the "To whom" parameter to "room". It looks like this:
message script: type single: to whom room: low extras.public.2
You can also send a message to everyone in the room except the person who triggers the event, by setting the parameter to "room_ex". This allows you to tailor the message, having the active player see one message and the passive observers something different. For example, if a player does something that kills her, you would send one message to her telling her about her grisly death, and a different message to any bystanders, describing the poor player's fate. It looks like this:
message script: type single: to whom room_ex: low extras.public.2
There are examples of this effect all over the Solar System, for example when a player plays the piano in Chez Diesel on Mars.
ANNOUNCEMENTS
There is one more variation on sending text, which doesn't send text to a particular player. That is the announce script which lets you specify which location the text should be sent to. Any player who is in the location at the time the text is sent will see the message. This means that if a player does something in one location, it may have an effect elsewhere - if she sets off an explosion in the Martian Ruins, players sitting in Chez Diesel having a drink might hear a rumbling noise and see some dust falling from the ceiling!
You can see how this works on Titan; if a player pulls the lever at the end of the hallway in the northwest part of the map, any players in several different locations such as the processing rooms and control room get a message. It's also used to make the announcements in Earth's spaceport.
The script works just like the message script, in that there are parameters to type in the text, or specify the low and high paragraphs from the message file. There is also a parameter for the location number the message should appear in. The script only lets you specify one location, but if you want the message to reverberate in more than one place, just repeat the script for each location.
The script looks like this when it is used:
announce type single: location 778: low port.announce.1
INCLUDING THE PLAYER'S NAME IN THE MESSAGE
"So, Mr Bond, we meet again..."
You can personalise a message sent to a player by including their name in it. This allows you to have a friendly greeting when a player enters a room:
As you enter the bar, a waitdroid says, "Welcome, Newbod, let me show you to a table."
Or you can inform other players that something has happened to a player that triggered an event:
Dork pulls the lever on the wall - the one marked "Do not pull this lever" - and a trapdoor opens in the floor. The twit falls through it and disappears from view.
To do this, you use a little code that is put anywhere in the text you want to send (whether from the message file or typed directly into a message event). The code is:
%s
Using that code, the above paragraphs look like this:
As you enter the bar, a waitdroid says, "Welcome, %s, let me show you to a table."
%s pulls the lever on the wall - the one marked "Do not pull this lever" - and a trapdoor opens in the floor. The twit falls through it and disappears from view.
You can only use this code once in each paragraph of text, so if for some reason you want the player's name to show up more than once, you will have to write your text so that it is split over several paragraphs.
3.5 KEEPING PLAYERS OUT OF A LOCATION
This lesson teaches you how to write an event to prevent players from walking into a location. This uses the same script as before, to send a message to the player explaining why she cannot enter the location, and introduces you to another script to move her to a different location on the map.
SEE THE EVENT IN ACTION
Before I explain how this kind of event works, you need to go take a look at it in the game to see the practical effect. If you have an alt at a rank lower than Merchant, you can go to the Trading Guild building on Earth and try to walk into the Members Lounge. You will be prevented from entering the location.
WHEN TO USE THIS EVENT
You might wonder why bother to put a location on a map which players cannot actually get into - wouldn't it be better to leave the location off altogether? Or if you must have the location there, just leave off the movement arrow?
There are several reasons:
· A location might block all players from entering in the normal way, but be accessible some other way as part of a puzzle, and the message players are given when they are denied entry gives a hint of some kind
· It might be intended to allow access later for special occasions
· A location might only admit a certain type of person, such as Merchants and above in the Trading Guild - but you need to know how to keep everyone out before you can learn how to be selective
· As an alternative to an event on the no-move trigger, this event allows you to craft a response for a move in one particular direction only
YOUR SECOND EVENT
You are now about to write your second event. You need to load the event file for your planet into the editor. If you've been going through these lessons in order, then it should contain one event already, from the previous lesson.
First you need to decide what category and section this event should go into. In the Sol planets, I used moves.keepout for this type of event. If you have already set up that category and section, go to the File Display page and click on the category, then the section, so the names show at the top of the screen. Otherwise, type in the category and section names and click the 'Create Cat/Sec' button.
Fill in the comments box to remind yourself what the event is for. Then you can write the scripts to make this event to keep a player out of a location.
CONSTRUCTING A KEEP OUT EVENT
There are three stages to this kind of event: the trigger, the script to move the player back where she came from, and the script to tell her what's going on.
THE TRIGGER
This event is triggered by the Enter trigger on the location which you want to keep the player out of, so it happens before she actually gets into the room.
Putting an event on this trigger does not necessarily stop the player from proceeding into the room - that depends on what the event actually does. If the event moves her elsewhere then she won't enter the room, but if it doesn't specify any movement then she will carry on into the room as normal - see the example in the previous lesson, Gallagher's.
MOVING THE PLAYER
Since the player has left the location she was in when this script gets triggered, you need to specify where she should go when she is prevented from entering the location. You do this with a system script, move. This script can also be used to move an object, but that's something you will learn about later.
If you look at the move script, you will see that it has the following parameters:
· To location
· What to Move
The "What to Move" parameter defaults to "player" - it can also be set to "object" and that's something you will learn about later, so for now just leave it.
The only parameter you need to think about for this kind of event is the "To location" parameter: that is, the location you want to move the player to. For a Keep Out event, that is the location she came from.
A little diagram might help to explain this:
[LOC 31, Road]-----[LOC 32, Building]
If Loc 32 is the location you want to keep players out of, then the trigger is Loc 32's Enter trigger. The move event must send the player back to location 31. As far as the player is concerned, she won't even have entered Location 32, she will simply see the description for location 31 again as she arrives back in that room.
The script looks like this:
move script: what player: to location 31
You can only move the player to a location on the same planet - you can't move her to a different planet.
TELLING THE PLAYER WHAT'S HAPPENED
Whenever you prevent a player from moving into a location you need to tell her why she can't enter - otherwise she will wonder why not. The way to do this is with the message script, which you learnt in the last lesson.
The script looks like this:
message script: type text: to whom individual: text 'The doorman looks down his nose and informs you snootily that this establishment is for members only.'
GETTING IT IN THE RIGHT ORDER
That's all there is to it - the event consists of just those two scripts. But it is important to have the scripts in the right order. You need to understand exactly what is happening to the player.
The move event moves her to a new location and sends her the location description. If you have the message script first, followed by the move script, then the message will appear before she has been dumped back in the original location. What appears on the screen will look like this:
>w
As you walk through the door into the member's lounge, an alarm buzzes. This summons a waitdroid, who politely but firmly stops you from walking into the room. "I am very sorry," it says in a polite but firm voice, "but the member's lounge is off-limits for non-members. You are not a member. Therefore, you cannot come in." It turns you around and, politely but firmly, propels you back down the stairs to the lobby.
Galactic Trading Guild, Inc
This is the headquarters of the guild that regulates and controls trading throughout the Galaxy. Nobody can buy or sell goods without being a member of the guild - at least, not legally.
The opulently-decorated room is a monument to the guild's success. One wall is taken up with a display cabinet containing samples of all the commonly-traded commodities. There is even a very small amount of anti-matter, safely contained in a magnetic bottle.
A flight of marble stairs sweeps up to the west, leading to the members' lounge, while a door to the south is labelled "Membership Secretary".
If you have the scripts the other way around, then the message will appear after the description of the location she has moved to, like this:
>w
Galactic Trading Guild, Inc
This is the headquarters of the guild that regulates and controls trading throughout the Galaxy. Nobody can buy or sell goods without being a member of the guild - at least, not legally.
The opulently-decorated room is a monument to the guild's success. One wall is taken up with a display cabinet containing samples of all the commonly-traded commodities. There is even a very small amount of anti-matter, safely contained in a magnetic bottle.
A flight of marble stairs sweeps up to the west, leading to the members' lounge, while a door to the south is labelled "Membership Secretary".
As you walk through the door into the member's lounge, an alarm buzzes. This summons a waitdroid, who politely but firmly stops you from walking into the room. "I am very sorry," it says in a polite but firm voice, "but the member's lounge is off-limits for non-members. You are not a member. Therefore, you cannot come in." It turns you around and, politely but firmly, propels you back down the stairs to the lobby.
There are times when it's appropriate to have things happen in this order, but for a keep out event, you normally want the message to appear before the move, so check your event and if necessary move the scripts using the 'Move Up' or 'Move down' buttons until they are in that order.
OTHER CONSEQUENCES OF KEEP OUT EVENTS
You can only use this method to keep players out of a location if there is just one entry into the location. Why? Look at this diagram:
[LOC 31]-----[LOC 32]-----[LOC 33]
If the player is in location 31 and tries to enter location 32, she is moved back to 31. But if she enters from location 33 the event moves her to 31 which means she jumps to a new location on the map. While you might be able to justify this by writing a suitable text message, it's not very satisfactory. It's far better to make sure that the location to which you want to bar entry has just one entrance.
In fact, there is a way to find out which direction a player has come from, but that's covered in a later lesson.
USING DUMMY LOCATIONS
If you want to use this event to provide something special if a player moves in a particular direction she should not be able to go in, then you need a location on which to hang the event. Since the room is not one a player should ever be able to get into, it is called a dummy location, and it doesn't really matter what name or description you give it. However, to help you keep track of what the dummy location is actually for, it's a good idea to use the description as you would a comment on an event.
It's also worth remembering that events don't always work first time. If you make a mistake with an event on a dummy location - for example, you forget to set the event trigger - a player may well find herself able to wander into the room. For this reason, always make sure you set the movement arrow so there is an exit from the dummy location - otherwise, if you mess up, players will end up trapped.
USING THE IN ROOM TRIGGER
You can put a keep out event on the in room trigger instead of the enter trigger, to create a very different effect. If you do, the event will happen after the player walks into the new location. In effect, they will gatecrash the party but then be thrown out of the room, rather than get turned back at the entrance. You can see this in the loos on Earth - walk into one of the wrong ones for your gender and you will get to see the location description but then be moved back out again.
The event itself is identical to the basic keep out event - it's a message and a move - but the difference is the trigger it's put on.
OTHER USES FOR THE MOVE SCRIPT
The move script is not just used to keep people out of a location. It can be used to move people all over the map. For example, the usual way to provide a shortcut from one side of the map to another would be to use the special directions in the map editor to link two non-adjacent locations. But if you want anything else to happen at the same time - such as a message explaining what is happening - then you can use the move script.
To see this in action, visit the hospital on Earth. There is a shortcut back to the spaceport from the road outside, in the form of a hovercab ride. This uses the move script to transport the player across the map. It's got a few extra bells and whistles on it such as charging money for the ride, and delaying things for a few seconds - and you'll learn how to do those things later - but fundamentally, all it does is move the player and send some text.
Note: you can only move the player to a location on the map - you can't shift her to a different map, even if it is in the same star system.
3.6 MAKING CHECKS AND CHOICES
This lesson shows you how to write conditional events, that only happen under certain circumstances, and explains how to link more than one event together into a chain. It builds on the events you have learned about so far - sending a message and keeping a player out of a location.
A NEW CONCEPT: LINKING EVENTS TOGETHER
The two events I've taught you about so far have been simple events that stand alone. The event is called, it does what it's supposed to do, then it stops. But Fed2's event system allows you to link events together so that one event calls another event. With conditional events, one event will call a variety of different events depending on the circumstances. This makes the system very powerful and flexible.
If you look at the system scripts in the editor, you'll see that many of them have parameters which are event numbers. This is how you link events together into a chain. The event calls another event which will do something else.
Look at the examples in this and the following few lessons, and you will see that it allows you to do things that you could never do if all events were single, discrete things.
CHECKING PLAYER DETAILS
Usually conditional events will check the player that triggers the event and, depending on what the check discovers, vary the outcome.
There are a number of different scripts that check different things about the player. All of the checking scripts have parameters for the different outcomes, and you type in the event that should be called for each of the outcomes. You don't have to fill in all the parameters - you might want an event to happen for one of the possibilities, but nothing to happen for the other. Just leave those parameters blank.
If you just type in an event number it is assumed that the event to be called is in the same category and section as the one you are writing. To call an event from a different category and section, you include their names, like this;
moves.keepout.4
You cannot call an event from another map's event file.
This lesson covers the checking script that looks at the player's gender.
CHECKING A PLAYER'S GENDER
This is one of the simplest player checks, because it only has three possible outcomes: a player is either male, female or neuter. The script is called checkgender and it has three parameters, which are the events to call for each of the three genders.
You can see this script in action by visiting the toilets on Earth. Each of the loos has an event on it that checks the player's gender, and throws out anybody wandering into the wrong loo.
A gender check can also be used to vary a message sent to a player. If you combine this with the code that allows you to include the player's name in a message, it means you can send an appropriate greeting: Mr Newbod, Ms Newbod or M Newbod.
That's the example we are going to use for this lesson: a greeting when the player walks into a bar.
CONSTRUCTING THE GENDER CHECK
To start with, you need to write the event that does the checking. Start a new category and section, so that this is event number 1. Click on the checkgender script from the list.
For each of the three possible outcomes, you want to call a different event. Since this event is number 1, the others are going to be events 2, 3 and 4. So for the "Male" parameter, type in 2; for "Female" type 3, and for "Neuter" type 4. Then click the 'Add Script' button. The completed script will look like this:
checkgender script: male event extras.bar.2: female event extras.bar.3: neuter event extras.bar.4
Don't forget to fill in something useful for the comment. That's all you need in event 1, so click 'Next Event'. This clears the screen and sets the number to the next available one in the section - in this case, number 2.
Now write event 2, which is what should happen if the player is a boy. For this example, the player gets sent a greeting on walking into a bar:
Hello Mr Newbod, welcome to the Bar Sinistre.
Don't forget to use the code %s to put the player's name into the text. the script will look like this:
message script: type text: to whom individual: text 'Hello Mr %s, welcome to the Bar Sinistre.'
Add the script and click 'Next Event', and then you're ready to write event 3 - which is almost identical to event 2, the only difference being that instead of "Mr %s" you type "Ms %s". And finally, event 4 which is another repeat, this time with "M %s" for the neuters.
The set of four events together look like this:
Start event: #1
comment: Bar Sinistre - loc 345 - player greeting on In Loc trigger, different for each gender
checkgender script: male event extras.bar.2: female event extras.bar.3: neuter event extras.bar.4
End event: #1
Start event: #2
comment: Greeting for boys
message script: type text: to whom individual: text 'Hello Mr %s, welcome to the Bar Sinistre.'
End event: #2
Start event: #3
comment: Greeting for girls
message script: type text: to whom individual: text 'Hello Ms %s, welcome to the Bar Sinistre.'
End event: #3
Start event: #4
comment: Greeting for others
message script: type text: to whom individual: text 'Hello M %s, welcome to the Bar Sinistre.'
End event: #4
THE TRIGGER
As with the original text event you learned about in your first lesson, this event is put on the "In Location" trigger of the location, so it happens after the player has seen the location description. The event to be called is the first event in the sequence - in this case, event 1.
LEAVING OUT ONE OPTION
If you want something to happen for one of the outcomes in a conditional script but not the others, you fill in one parameter and leave the others blank. In a gendercheck script, you can leave one or two of the parameters blank - for example, you can have an event called for males but not females or neuters, or for males and females but not neuters.
That's what happens with the toilets on Earth. If a man or a neuter walks into the ladies' loo, the event throws him/it out, but for a female no event is called, nothing happens, and she can stay in the room.
CHECK FOR OWNER
Here's a way to provide yourself with a cosy little hideaway that only you can access, or to block off a section of your planet that is still under construction so that nobody but you can wander around it. This is particularly useful if you want to add some complex events to an area which you don't want anyone to play with until you have checked that they work, such as a puzzle.
The script is checkforowner and that's exactly what it does: it checks whether the player triggering the event is the owner of the planet. It has two parameters: the event to call if she is the owner, and the event to call if she is not.
You can use this script in conjunction with a keep out event, like the one you learned about earlier. Here is an example of the script in use: the script calls an event if the player is not the owner which turns her back at the door. If she is the PO, nothing happens, allowing her to walk into the room as normal:
checkforowner script: visitor event moves.keepout.2
Event 2, called if she is not the owner, is a standard keep out event so the events together look like this:
Start event: #1
comment: Private office - loc 543 - keep everyone out but me
checkforowner script: visitor event moves.keepout.2
End event: #1
Start event: #2
comment: Throw the visitor out on his ear
message script: type text: to whom individual test 'The security guard will not allow you to enter the office of the High and Mighty Most Esteemed and Noble Planet Owner.'
move script: what player: to location 542
End event: #2
The trigger for the events is the location "Enter" trigger of the private room.
Note: senior management (ie Bella, Freya and Hazed) are seen by the game as owners of all planets, so they won't be stopped from entering a location using this script.
A VERY BIG WARNING
Once you start chaining events together, with one event calling another, there is something you have to be very careful about. Make sure that you do not have an event that calls itself. If event 1 is doing a check of some kind, the parameters for the outcomes of the check should be events 2, 3, 4 and so on. If you make a mistake and set one of the parameters to 1, dire things will happen.
Similarly your events must not form a loop, with event 1 calling event 2, and event 2 calling event 1. Even if there are many links in the chain the ends must not join to form a loop.
Tesla will (eventually) check for this, and I'm going to be scrutinising event files before they are put into the game to check for this, but you must watch out for this too.
What dire things will happen? Well, an event that calls itself crashes the game. You do not want your planet to cause a game crash!
EVENT TRACKING
Once you start writing events that call other events, you need to take more care to test your events once they are in the game, making sure they work correctly. With conditional events, you will need to find a way to see all possible outcomes; you may have to set up some alts with different genders, or enlist the help of some friends.
If a series of chained events doesn't work, or does something unexpected, it can be tricky to figure out exactly where the mistake is. Fortunately, there's a very useful facility in the game that helps you to trouble-shoot events. If you type 'SET TRACKING ON' then whenever you trigger an event, the game will tell you which events are being run. 'SET TRACKING OFF' does the obvious.
When you have event tracking turned on, you will also see any invisible objects in the room, which you will find useful when I teach you about objects later in the manual.
Event tracking only shows you the events and objects on your own planet.
TESTING EVENTS IN TEST FED
With simple events it is a minor inconvenience if you get the files linked into the game and then discover you have made a mistake and they don't do what you intended. But when your events get more complicated, an error could have strange consequences: trapping a player in a location, damaging her, or even crashing the game.
If you have written events where there is this risk, you can ask us to link your files into the test version of Fed, so that you can test them without having to worry about things going wrong. If you crash the test version it doesn't matter!
To test your events in Test Fed, email feedback@ibgames.com and we'll explain how it works.
3.7 CHECKING WHERE A PLAYER HAS BEEN
This lesson teaches you how to check which direction a player has entered a location from. It builds on the keep out events and the checking events you learned earlier.
If you remember a few lessons back, when you were learning about keep out events, I said there is a way to find out which direction a player has come from. Now you can learn how.
First, a little diagram:
[Backroom - 344]-----[Bar - 345]-----[Road - 346]
This very crude drawing shows a bar which has two entrances, one from the road outside and one from a backroom. If a player walks into the bar from the street, then the barman will greet her with a cheery hello. But if she walks into the bar through the backroom door, the barman won't bother to say hello.
Therefore, the simple "send a message on entering the bar" event which was your first lesson, needs to have a check before it to determine where the player has come from. The script is checklastloc. The parameters are:
· Last Location - the location number you are checking she may have come from
· Pass - the event to run if she did come from that direction
· Fail - the event to run if she did not
In this example, the location to check is 346 (the road) and the event to call goes on the "Pass" parameter:
checklastloc script: location 346: pass extras.bar.2
You could equally do it the other way around - check if the player has come from location 344 (the backroom) and run the event if the check fails. If you do it that way, the player will also get the greeting if she logs on in the room or teleports in.
Whichever way you do it, the event that is called is the original greet event. The two events together look like this:
Start event: #1
comment: Bar Sinistre - loc 345 - player greeting on In Loc trigger if she has come from road
checklastloc script: location 346: pass extras.bar.2
end event: #1
Start event: #2
comment: Greeting for new customers
message script: type text: to whom individual: text 'Hello %s, welcome to the Bar Sinistre.'
end event: #2
PLAYERS WHO HAVE JUST LOGGED ON
If the player logs on into a room, their lastloc is set to -1. Therefore, checking if the lastloc was -1 will tell you if she just logged on into the room, rather than walking into it. You could then set up a completely different event for this possibility.
MAKING MORE THAN ONE CHECK
If you want to provide a different message for people logging on in the room, or if there are several difference entrances and you want a different message for each, you use the checklastloc script several times in the same event, each script checking for the different locations the player might have come from.
Let's say you want a welcome message if she walks in through the front entrance, and a different message if she walks in from the back room. You would use two scripts, each one calling the event that would send the appropriate message:
· Check 1 - was the last location 346 - if it was, call event 2
· Check 2 - was the last location 344 - if it was, call event 3
The events put together would look like this:
Start event: #1
comment: Bar Sinistre - loc 345 - In Loc trigger - check where she came from
checklastloc script: location 346: pass extras.bar.2
checklastloc script: location 344: pass extras.bar.3
end event: #1
Start event: #2
comment: Greeting for customers walking through front door
message script: type text: to whom individual: text 'Hello %s, welcome to the Bar Sinistre.'
end event: #2
Start event: #3
comment: Customer came from back room
message script: type text: to whom individual: text 'The barman smirks at you and says, "So, %s, I hope you liked the show in the back room."'
end event: #3
3.8 INTRODUCING RANDOMNESS
This lesson teaches you how to vary the things that happen, to make things more interesting for the player by using random numbers and probabilities. Variety is the spice of life!
This is the first lesson in the event tutorial which you can skip if you want to. If you don't feel happy with the concept of randomness or the way that probabilities work, or you think it's too early to get this technical, or you just don't want to learn something new, then leave it and move on to the next lesson. You can always come back to this one later.
IDEAS FOR USING RANDOM CALLS IN EVENTS
There are loads of examples in the Solar System that demonstrate ways to use the random instruction to vary an outcome. Many of the role-playing objects in Sol - the top hat, the butterfly net, the tap shoes, the cat and so on - all use the random function to vary what happens an event is triggered.
This lesson will use as its example the jukebox in the bar on Mercury which has an extensive playlist. When the player types 'PLAY JUKEBOX', one of the songs is chosen at random - using random numbers.
CALLING RANDOM EVENTS
Whenever a script calls another event, you can replace the event number with an instruction to call an event from a range of events. The game will generate a random number within that range to decide which event to call.
The instruction looks like this:
random[a-b]
where "a" is the lowest number in the range and "b" the highest number, and they are enclosed in square brackets (the brackets must be square - round, curly or pointy brackets won't work). For example, if the possible events were 2, 3, 4 and 5 the random instruction would look like this:
random[2-5]
The easiest way to set up some random events is to first write an event to pick which of the random choices will run. The first event in the chain, that's the one that runs when the trigger gets pulled, contains a script which calls another event: call. The only parameter is the event to be called. Normally you would type the number of the event to be called so it would look like this:
call script: event objects.jukebox.2
If you want to insert a random element here by varying the script that gets called, you replace the event number with the random instruction:
call script: event objects.jukebox.random[2-5]
SETTING UP THE DIFFERENT OUTCOMES
Having told the game to pick one of a set of events, you need to write those possible events. They all need to be in the same category and section, and they need to be numbered consecutively - but apart from those rules, the events can do what you like. The jukebox events send a text message to the player. Here's what those events look like:
Start event: #1
comment: Play jukebox - object in loc 328 - call random
call script: event objects.jukebox.random[2-21]
end event: #1
Start event: #2
comment: jukebox - 1
message script: type single: to whom room: low objects.jukebox.1
end event: #2
Start event: #3
comment: jukebox - 2
message script: type single: to whom room: low objects.jukebox.2
end event: #3
and so on.
OTHER IDEAS FOR USING RANDOM
Random events don't just have to send messages. You could move a player to a random location on the map, by having separate events that move her to a number of possible destinations, with a random call selecting one of those events. This is what happens when you are teleported out of the treasure room in the heart of the Martian Ruins, into a random location in the maze.
You could use random instructions to add atmosphere to a dangerous place that the player is exploring. For each location the player enters, have a random chance that something spooky will happen. This effect is used in the wilderness on Earth, to determine which animals you meet as you explore.
You can even decide whether a player who does something dangerous or fool-hardy will live or die, depending on the random number generator. You can see this if you bungee jump off the roof of the Galactic Administration HQ on Earth.
Your use of random is limited only by your imagination.
USING THE PERCENT SCRIPT
The random instruction is all very well when you want each of the possible outcomes to be equally likely. But there are times when you want to weight the outcomes so that one is more, or less, likely than the others.
The percent script lets you select between three different events, and set the probability for which will be selected. In practice, you would use it in place of the Call random[...] script.
The way it works is that you assign a percentage value. The game picks a random number between 1 and 100 and checks it against your percentage, then calls one of three different events depending on the outcome.
The parameters are:
· Value to test - the percentage you want to check against
· Higher - the event to call if the random number is higher than your percentage
· Equals - the event to call if the random number is exactly equal to your percentage
· Lower - the event to call if the random number is lower than your percentage
You can have two of those events the same - for example, call the same event if the random number is lower than or equal to your percentage; have something different only if the random number is higher than your percentage.
For example, you might want there to be a relatively small chance that a player's actions can kill her. Perhaps there's a 10% chance of death happening. In which case, the script would look like this:
percent script: value 10: higher random.percent.2: equals random.percent.2: lower random.percent.3
If the game's random number was higher than 10, event number 2 would be called - which would be the event that allows the lucky player to survive. If the game's random number was lower than or equal to 10, event 3 would be called instead and the unfortunate victim would meet her grisly end.
If you don't want there to be an event for one of the possibilities then leave that parameter blank.
Tossing a Coin
I don't think there are any examples in the game right now which use the percent script, but perhaps the easiest way to explain this script, is the act of tossing a coin. There are usually two outcomes of a coin toss - heads, or tails. To simulate this using the percent script, you would use:
percent script: value 50: higher random.percent.2: equals random.percent.2: lower random.percent.3
Where event 2 was the heads event, and event 3 the tails event.
Of course, there is a very small possibility when you toss a coin that it will land on its edge, so you can add an extra event for that outcome, for the "Equals" parameter:
percent script: value 50: higher random.percent.2: equals random.percent.3: lower random.percent.4
This means there is a 49% chance the coin will come up heads, a 50% chance it will be tails, and a 1% chance it will land on its edge. Not strictly accurate, but a good simulation!
3.09 CHECKING A PLAYER'S RANK
This lesson teaches you how to check a player's rank and vary the outcome accordingly.
CHECKING THE RANK
The script you use to check a player's rank is checkrank. You specify a rank then give events to run if the player is at a higher or lower rank, or the actual rank you specify.
The script parameters are:
· Rank to test - the rank you want to check for
· Higher - The event to call if the player is at a higher rank
· Equals - The event if the rank is the same
· Lower - The event if the rank is lower
For the "Rank to test" parameter you specify which rank you want to check for by typing in the name of the rank, as it appears in the game: groundhog, commander, captain etc. Type it all in lower case.
Note that you use "adventurer" for that rank, which will work even for female players who are labelled in the game as Adventuress.
This is the mechanism used in the Trading Guild members' lounge, where only players of Merchant rank and above are allowed. The script checks the player's rank against the Merchant rank and if she is a lower rank, it calls a keep out event to turn her away. If she's at the same or a higher rank, nothing happens so those parameters are left blank, allowing her to walk into the room.
The script looks like this:
checkrank script: rank merchant: lower moves.trader.2
Event 2 turns the player away and you know how to do that. The combined events look like this:
Start event: #1
comment: Trader's lounge - loc 1037 - stop poor people getting in
checkrank script: rank merchant: lower moves.trader.2
end event: #1
Start event: #2
comment: If lower than trader, keep out...
message script: type single: to whom individual: low moves.trader.1
move script: what player: location 1038
end event: #2
OTHER USES FOR RANK CHECKS
A rank check is not just used to keep people out of rooms - there are lots of other uses. For example, you could vary a message sent to a player depending on her rank - for an example of this use of rank checks, look at the Magellan puzzle where low-ranking players are given extra help.
You can have more than one checkrank script in an event, each providing an event for that particular rank - use the "Equals" parameter to call the appropriate event for each rank. For example, you could have a complete set of greetings for the different ranks, addressing players as Commander Newbod, Captain Newbod, etc.
3.10 CHECKING AND CHANGING A PLAYER'S MONEY
This lesson teaches you how to check whether a player has enough money to pay for something, and to add or subtract money from the player's personal balance.
CHECKING MONEY
If you are going to charge a player for goods and services on your planet, you need to make sure she can afford it. You can't take money from somebody who doesn't have it! The script you use is checkmoney.
The script paramets are:
· Value to test - the number of groats the player needs to have in order to pay for whatever it is you are selling; in other words, the price
· Higher - the event to call if the player's bank balance is higher than the value
· Equals - the event to call if it's equal to the value
· Lower - the event to call if it's lower
Note: you cannot take money off a player if she has less than 200 groats, because she must always be left with enough money for fuel. The checkmoney script takes account of this, so it actually checks to see if the player's bank balance is 200 plus your specified price. For example, if you want to sell something costing 10 groats, and you put that value into the script, if the player has 210 groats then the equals event will run; if she has more than 210 groats the higher event will run; and if she has less than 210 groats, the lower event will run.
Since you cannot take away more than 1,000 groats from a player, the checkmoney script won't bother to check for higher values than that - put in a higher value and it'll get reported as an error by the Tesla planet checker.
The script looks like this:
checkmoney script: amount 92: higher moves.cab.3: equals moves.cab.3: lower moves.cab.2
In this example, the event that gets called if the player's money is higher than the value or equal to it are the same, and that is the event that does whatever it is - sells the player some food, takes them on a cab ride, charges them entrance to a building, or whatever.
The event if the player's money is lower than the specified amount is an event that refuses to sell the player the goods or services in question because she is skint. Normally all it needs to do is send a message that says something like, "You can't afford that."
CHANGING MONEY
Selling special food in a bar, charging for transportation, selling objects in a shop all mean you want to take money away from a player. Conversely, you might want to reimburse a player the expenses incurred in a puzzle or reward her for finding a particular object.
To do these things you need to change the player's bank balance to add or subtract money, and you do it with the changemoney script. There is just one parameter: the amount of money you want to add or take away - to take away money, you use a negative number. A positive number means the money is given to the player.
The script is most commonly used to take money away when selling goods or services, which uses a negative number. It looks like this:
changemoney script: amount -92
This is the script used to take money away when a player takes the hovercab ride on Earth, where the fare is 92 groats.
LIMITS ON CHANGING MONEY
When you use the changemoney script to change a player's bank balance there are limits on what you can do. Whether you set a value that is positive or negative, the script won't allow the value to be more than 1,000 groats per transaction.
If you think you can get around this by using the script multiple times, think again. For a start, if you are giving money to the player, your events are subject to the 1,000ig limit on receiving gifts, so you can't use this as a sneaky way to get around the limits. If a player who has already exceeded the limit triggers a changemoney script with a positive value, she just won't get the money. Any other script in the event will run, including messages telling her she's got the money.
Similarly, if the script takes money away and this would leave the player with less than 200 groats, the money just won't be deducted. That's why you need to check whether a player can afford your price before you try to take money away.
If you take money away from a player you must accompany the changemoney script with a message telling her what has happened - don't just remove the money silently.
Using the script multiple times to remove large sums from a player's bank balance is wrong - don't do it.
Any time you intend to charge the player for something you must make sure she knows what she is getting, and what it's going to cost, before she does whatever is necessary to trigger the event. Don't try to cheat her.
You are being allowed to use events which have powerful effects but if you abuse them, you will lose the ability to add events to your planet.
3.11 CHECKING AND CHANGING A PLAYER'S STATS
This lesson teaches you how to check one of the four stats, and to change the current value.
CHECKING STATS
One more way to restrict what a player can do, and to customize events for different players, is to check the player's stats - stamina, strength, dexterity and intelligence - and only allow her to carry out an action if her stats are high enough. You might require a player to have a high dexterity before she can manipulate a complex gadget, or be super-intelligent to figure out what to do with some alien machinery, or perhaps the office of the Galactic Union of Strong-beings will only admit those with a high strength.
You can also check a player's stamina before allowing her into a dangerous area of your planet, and remind her to eat something if it's low.
The script you use is called checkplayer. The parameters are:
· Stamina - the value the player's stamina needs to be to pass the check
· Strength - the value the player's strength needs to be
· Dexterity - the value the player's dexterity needs to be
· Intelligence - the value for the player's intelligence
· Pass - the event to call if the player's stats are higher or equal to the specified values
· Fail - the event to call if the stats are lower
You can use the script to check for just one stat, or all, or anything in between. Just leave the parameters blank for the stats you don't want to check. For example, if you have a task where a player's intelligence needs to be 35 or more, type 35 into the "Intelligence" parameter and leave the other 3 stat parameters blank. If the player's intelligence is 35 or more then the Pass event is called, otherwise, the Fail event happens.
The script looks like this:
checkplayer script: intelligence 35: pass gadget.use.2: fail gadget.use.3
If you want the player to have a strength of 30 and stamina of 25 before they can tackle an exhausting challenge, then put the values in for both those parameters and leave the other stat parameters blank. The Pass event will only run if both the strength and stamina match the values you specify.
When running this script, the game always checks against the current value of the stat, not the max.
CHANGING STATS
To change one of a player stats, you use the script changeplayer. The parameters are:
· Stamina - the amount to change the player's stamina
· Strength - the amount to change the player's strength
· Dexterity - the amount to change the dexterity
· Intelligence - the amount to change the intelligence
You can change one or more stat in the script - just leave blank the parameters you don't want to affect. A negative number means the stat will be reduced, a positive one means an increase.
The change affects the current level of the stat - you can't alter the max value. You can't increase any stat's current level above its max, and you can't decrease strength, dexterity or intelligence below 1. Stamina can go lower, in which case the player dies.
CHANGING STAMINA
You will usually use the changeplayer script to change the player's stamina, either to feed her or to damage her. Feeding a player is something you do when you provide special food or drink in a bar, and a future lesson will explain how to do that. Damaging a player is a way to penalize her for doing something dumb, which could give minor damage or could kill her outright.
There are few reasons to change the other three main stats but you'll probably change stamina a lot.
If you are feeding a player you will increase her stamina by 5 or so, in which case the script looks like this:
changeplayer script: stamina 5
If you want to top up the player's stamina to the highest it will go, just add a large number such as 150:
changeplayer script: stamina 150
To knock off a few stamina points as a warning, use a negative value:
changeplayer script: stamina -5
You should also accompany a script that makes any change to a player's stats with a message telling her what has happened. That is particularly important when knocking off stamina, otherwise she won't know that her stam has gone down and that she therefore needs to eat something.
THE ORDER OF SCRIPTS
This is one of those events where getting the scripts in the right order is important. The message script telling the player what is going on needs to go before the changeplayer script that removes stamina. The reason is that even if you're just knocking off a couple of stamina, it might be the final straw that kills her. If that happens, she will be transported to the hospital.
If the message doesn't show up until after the death, it won't look right. You need to tell her she has been damaged before she dies and is shipped off on a gurney.
KILLING PLAYERS
Life in Fed DataSpace isn't all sweetness and light, and sometimes you want to kill a player. You may have a death location, where walking into it kills everyone without exception, or the death might be part of a chain of events which only affects certain players who do the wrong thing.
To make a death location you put an event on the In Location trigger, and have the event do the dirty work of snuffing the player.
Rules for Killing Players
There are some rules you must follow if you want to kill players, and if you break these rules you will have the ability to add events to your planet taken away:
· No death locs in or near the essential services. Separate your dangerous areas away from the landing pad, trading exchange, hospital etc
· Put a warning on the entrance to the segregated area. A player must be told she is about to enter an area which has potentially fatal locations
· Check the player's insurance at the entrance to the dangerous area, and if she's not insured, don't let her proceed (you'll learn how to check insurance later in this lesson)
· Warn the player before she walks into a lethal location, or does something that kills her. You must give her a chance to avoid the death if she is paying attention
· Do not ever use death locs as a way to trick players into dying unawares or - worse - dying dead-dead
The Execution
To kill a player, use the changeplayer script and change the stamina, using a value of -150. The fatal script looks like this:
changeplayer script: stamina -150
As soon as the script runs, the player will be whisked off to the nearest hospital.
Telling the Player she's Dead
If you kill a player, you need to tell her she has died. Apart from it only being fair to explain to her what she did wrong, so she has a chance to avoid it next time, why lose the opportunity to describe the gory details?
If the death is caused by walking into a room, with the death event on the In Room trigger, the player will see the room description before she dies. You can use it to describe the pit of doom, the giant rotating knives or the deadly person-eating killer rabbit. You can also use a message to describe the exact manner of her death - it's a good idea to do this just in case she has been wandering around with brief descriptions on!
In the case of a death caused by an action, the message script is vital to let her know that what she just did has killed her - so she can avoid doing it again.
You will need to put the message script before the changeplayer script, otherwise it won't show up until after she's woken up in the hospital.
You can also tell anyone else who would logically be able to see the death what has happened. Use the announce script to tell anyone standing outside the death location that Newbod has just suffered a grisly fate. All of the death locs in Sol have this, so you can see it in action if you can persuade somebody to sacrifice themselves for your entertainment.
If the death is caused by something the player does, a message script used with the "To whom" parameter set to "room_ex" will tell everyone else who is present just what has killed our heroine.
CHECKING INSURANCE
If your planet has anything dangerous on it, you want to make absolutely sure that nobody without insurance can stumble into it. Your events should not kill players dead-dead even if they are very stupid. One way to do this is to have an event that checks if the player is insured before she can walk into the dangerous part of the planet. A player who is wandering around uninsured would be refused entry and told to go and get insurance immediately.
You can also check the player's insurance to make sure players who have just died do not walk out of your hospital uninsured. There is an example of this in Earth's hospital. If the player leaves the hospital ward without re-insuring, she receives a reminder message. This doesn't stop her from leaving, but it does mean only those that are really not paying attention will forget to re-insure. It's done with an In Location event on the room outside the hospital ward.
On the Graveyard asteroid, players cannot enter the puzzle area if they are not insured - they are turned away.
The script to check insurance is called - you could probably have worked this out for yourself - checkinsurance. The parameters for this script are:
· Pass - the event to call if the player is insured
· Fail - the event to call if the player is not insured
In this example, we want an event to run if the player is not insured, but have nothing happen if the player is insured. The script looks like this:
checkinsurance script: fail hospital.insure.2
The event that is called sends the reminder message, or turns the player back using the standard keep out mechanism, or whatever else is appropriate.
3.12 LOCATION COMMANDS
This lesson tells you how to add a simple one-word command to a location which, when the player types it, will run an event to make something happen.
Up to now, all the events I have taught you about have been triggered by a player walking into a room. But it's possible to make an event happen when the player does something other than just wander about.
More sophisticated commands with two or more words will be dealt with in a later lesson.
AN EXAMPLE
An example of a one-word command on a location can be seen in the Urban Spaceman's bar on Venus. Type 'SPIT' and an event runs which sends you a message; other players also see what you have done.
SPECIFYING THE COMMAND WORD
The map editor allows you to type a word which will be a command on a location, and set the event that will run when a player types that command.
To add a command word to a location, load the map into the map editor, click on the location so it is the currently selected one, then click on the vocabulary tab just underneath the map. This switches to a page containing columns labelled Command and Event. To add a command to a location, click on one of the empty boxes in the Command column and type in the word - all in lower case, with no spaces. Note that the game doesn't care if the player types the command in upper, lower or a mixture of the two cases, but the event does!
Then click on the box in the Event column next to the command you just typed, and type in the category, section and event number to be called when the player uses the command. In the rather disgusting spitting example, the event called is:
objects.spittoon.2
You can have more than one command on a location, and you can have different commands calling the same event. When you have set all that you want, click the 'OK' button and then save the file.
CHOOSING THE COMMAND WORD
You can use any word at all that would make a logical one-word command - or an illogical one if you prefer! If you choose a command that already exists in the game, your event will supercede the game command and run instead of the normal response. Sometimes this is useful, but you do need to take care that you don't mess things up.
For example, look at the 'JUMP' command. Use this anywhere except at a link and you get a harmless message:
You jump up and down, but nothing happens.
You could replace this with your own message:
You jump up and down, and accidentally knock over a vase of translucent star lillies.
Or have an event that does something completely different. If you have a location which is at the top of a very high cliff, then you could put a 'JUMP' command on it which calls an event to hurtle the player to her death.
However, when at the Interstellar Link, the command has a different effect: it lists all of the possible destinations. If you replace that with your own event, it is going to cause problems. It would be even worse if you replaced a universally useful command such as 'LOOK' or 'SCORE' with your own event. You are likely to get players very annoyed with you - and if you end up messing with players too much, you will get me annoyed which is a much more serious matter!
TELLING THE PLAYER ABOUT THE COMMAND
A player can only admire your event-writing handiwork if she knows there's a command to type. Unlike events on the location triggers, which happen whether the player knows about them or not, a player needs to know there's something interesting she can do in the room, so make sure the location description tells her there is something special here. Unless it's part of a puzzle, tell her what the command is; don't make her guess. Typing different verbs on the off-chance that something will happen is boring and will only appeal to obsessive types.
Of course, you could keep the command secret so you can have your own very personal events that only you know about! Just one of the perks of being a PO.
A SPECIAL ONE-WORD COMMAND: SEARCH
Players doing a puzzle can expect to search a lot of rooms looking for hidden things: secret doors, concealed objects, traps that needs to be disarmed, or even camouflaged mobiles. I will be covering search events in detail later in the manual, when I tell you all about puzzles, but for now you can see how this works on the moon. Go to that huge workshop on the lower level and head for the northeast corner. The description gives you a hint that it might be worth searching - and if you type 'SEARCH' you will find a secret room.
The event that is called by the search event is similar to the keep out event - it moves the player to a new location (in this case the secret room) and it gives a message telling the player what has happened. It also drains a bit of stamina because searching is a tiring business!
COMMANDS THAT CALL CHECKING EVENTS
If the command calls an event which runs a check, so that there is more than one possible outcome, you must make sure something happens for all the possibilities - even if all it does is send a message telling the player that she can't do that.
If a player types a command and nothing at all happens then it makes it look as if the game is broken. Which is bad.
3.13 WRITING THE EVENTS FOR A CAB RIDE
Now you have learnt a whole lot of scripts, it's time to put them together to do something useful! This lesson teaches you how to put a cab ride on your planet.
You will charge the player a fee for transporting her from one part of the map to another, using techniques learned in earlier lessons: checking a player's bank balance, taking money, moving her, and telling her what's going on, as well as adding a command to a location to trigger the event, or using a dummy location.
Of course, your transportation does not have to be provided by a taxi - it could be a horse-drawn carriage, a boat, a teleportation pad or a magic portal, whatever fits into your planet's style.
PUTTING THE SCRIPTS TOGETHER
The steps involved are:
1) The trigger - either the Enter trigger on a dummy location, or a one-word command on a location.
2) Checking the player's bank balance using checkmoney, to see if she can pay for the ride.
3) Refusing to take her if she cannot afford it, using message.
4) If she can afford it, take the money using changemoney.
5) The ride itself, using move and message.
You know how to do each of those components, so the only thing I need to teach you is how to link the events together.
THE TRIGGER
With the Earth cab ride the events are triggered with the command 'HAIL CAB'. You will learn how to add two-word commands later, but for now you have a choice about how to trigger the cab events:
· Dummy location - in the location that the player can get the cab, add something to the description telling her that there is a cab waiting and she can get in. Set the IN movement to a dummy location, which has the event on the Enter trigger.
· Put a one-word command on the location, such as 'TAXI', which calls the event.
Whichever trigger you choose, the event to call in this example is moves.cab.1.
THE EVENTS
The first event is a checkmoney event. If the cab ride costs 10 groats, set the value to check at 10. Set the "Higher" and "Equals" parameters to call event 3. Set the "Lower" to call event 2.
Start event: #1
comment: Cab ride from hospital - loc 1305
message script: type single: to whom individual: low moves.cab.1
checkmoney script: amount 92: higher moves.cab.3: equals moves.cab.3: lower moves.cab.2
end event: #1
Event 2 is what happens if the player has less than 210 groats (that is the 10 groat fare plus the 200ig she is always left with) so can't afford the cab ride. All it does is send a message telling her she can't take the ride without enough money:
Start event: #2
comment: Not enough funds for cab ride
message script: type single: to whom individual: low moves.cab.2
end event: #2
Event 3 takes the money, using changemoney set to -10. It sends a message telling the player about the ride and moves the player to her destination:
Start event: #3
comment: Cab ride
message script: type single: to whom individual: low moves.cab.3
changemoney script: amount -92
move script: what player: location 520
end event: #3
That's it!
PART 4 - OBJECTS AND MOBILES
4.1 INTRODUCTION TO OBJECTS AND MOBILES
This lesson introduces you to the way objects and mobiles work in Fed2, including the concepts behind the different types of objects, which you need to understand before you can add objects to your planet.
OBJECTS AND MOBILES: DEFINITIONS
Traditionally, the difference between an object and a mobile is that an object is a thing, or an item, that can be manipulated in some way, and a mobile is a person or creature that moves around under its own steam - also known as a non-player character (NPC).
In practice there is no difference between an object and a mobile; they are designed in the same way using the same editor. The terms are interchangeable.
An object can be something a player can pick up and carry away in her inventory, or it can be a stationary object that is not portable but has some other purpose. It could be lying around waiting to be found, or something the player buys from a shop, or is given by the game when she carries out an action. It may be able to walk (or fly) around on its own, and the player may be able to talk to it, or give it other items.
THE DIFFERENT TYPES OF OBJECT
Pay attention now, because this is important. Objects come in three different flavors, each of which has its own purpose, and you need to be clear on the difference before you can add objects to your planet. The types are Static, Dynamic and Abstract.
Static Objects
The easiest of these to understand is Static. A static object is stationary, fixed; it cannot be moved or carried away by a player. It could be a lever on a wall, a tree, a signpost or a trash can. Moving mobiles are also static objects - the word "static" means that players can't move them, not that the mobile can't move.
Players can examine a static object to read its description, but that's the only standard command that works with static objects - any other use they have is determined by the events you write.
Usually a static object shows up in a room on a line of text after the room description - or if you are using FedTerm, in the location panel on the top left of the screen. You can stop it from showing up by making it invisible, but that's for a later lesson.
What Use is a Static Object?
An object that can't be moved may sound pretty boring, but actually it's very useful. For a start, it's a way to provide information. The description of a signpost or a notice could tell the player something interesting, important or entertaining, such as directions or rules of the planet.
A mobile that moves around also gets designated as a static object, to prevent players from being able to pick them up and carry them away.
The real power of static objects, though, is that you can put commands onto objects. This means a static object is a way to provide extra commands in a location. A lever could have the command "pull" on it, so when the player types 'PULL LEVER' an event is called to do something. You will learn how to put commands onto objects in a later lesson.
There are examples of static objects all over the Solar System. For example, on Earth, just south of the spaceport, there is a signpost, and on Titan there is a lever which you can pull.
Dynamic Objects
A dynamic object is one that can be picked up and carried around. It could be treasure, or a tool or piece of equipment needed to complete a task, or just something for fun: a sargeur, a flower or a three-prong laser toasting fork.
While dynamic objects sound like they are extremely useful - and they are - you won't very often define an object as dynamic, because of the way objects work in Fed2. Which is to say that objects don't have any default behavior defined by the game itself, except for the ability to be picked up, carried around and dropped again. Objects don't recycle, reset, or revert to their starting position (except at the game reset) so the first person who comes across an object can pick it up and take it away, putting it out of reach for anyone else.
There are a few special uses you can put a dynamic object to, but they are not something you will use very often. An example of a dynamic object can be found in the workshop on the Moon - the sonic wrench which has been left lying in the middle of the huge area.
But if you are puzzled by being told not to define an object as dynamic, all will become clear when you read about abstract objects.
Abstract Objects
An abstract object is a template for an object that will be generated by the game when it's needed. For example, if the player buys an object from a shop, the events you write to control what happens tell the game to generate the object from the template you have supplied. The object that appears is a dynamic object that the player can drop, pick up and carry around, but it doesn't actually show up in the game until it's needed. Think of an abstract object as being a master from which copies are made.
The advantage is that there's no limit to the number of copies that can be made - which gets around the problem with dynamic objects, where the first person to come along can grab it. With abstract objects, everyone can have one!
Sol is full of abstract objects. Whenever you do something to obtain one of the role-playing objects such as the top hat, the catnip or the tap shoes, the dynamic object you end up with comes from the template of an abstract object.
4.2 USING THE OBJECT EDITOR
This lesson explains the mechanics of using the object editor to define your objects and mobiles and set all their attributes.
ABOUT THE OBJECT EDITOR
Objects are defined using the Object Editor. Each map has its own object file with the same name as the map to which it belongs, and the file extension .xob. For example, a planet map called bodville.loc will have an object file called bodville.xob.
To run the object editor, run the program ObjEdit.exe.
THE SCREEN
The main part of the object editor is a form in which you enter the data to define your object. Down the right side of the window is a panel in which all of the objects in the file you are working on are listed, in alphabetical order by their ID (more about object IDs shortly). If you click on one of the objects, the data for that object will display in the form.
If you have more than one object in a file, you can use the up and down arrows on your keyboard to scroll through the list, looking at each object in turn.
When the object editor starts, no file is loaded so the form has no data and there are no objects listed. It's waiting for you to load in an existing object file, or create some objects to save in a new file.
CUSTOMIZING THE EDITOR
You can change the font used by the editor - select 'Edit|Change font'.
You can make the editor window larger if your screen is big enough - stretching it horizontally will increase the width of the object list, and stretching it vertically will make the list longer and also increase the length of the Vocabulary box.
The editor will remember these changes between sessions.
BUILDING AN OBJECT
To define your first object, fire up the editor. All the data fields will be blank, so you can start typing in the object's information and setting its attributes.
Object Name
This is the name of the object as the player will see it - for example, rock, sargeur, yellow submarine, Winston Chortlenut, holo of the late Emperor Ming, etc. The name can be up to 31 alphabetic characters long, and can include spaces. You can use numbers in object names, but the name must start with a letter.
The name can include capital letters, but don't give it an initial capital letter unless it is a proper name. For example, an object called rock should not have a capital R, but a person called Rock should do!
If the player is going to have to type the object's name a lot in order to manipulate it in some way, don't make the name too long and unwieldy.
An object must have a name - the editor won't let you save the object without one.
Object ID
This is a unique identifying label given to all objects. Each object in the file must have a different ID. The reason for the ID is because object names do not have to be unique - you might have several different rocks, or a number of keys, on the planet, and the game needs a way to distinguish between them. You will, too, when you write events that use objects.
IDs are all in lower case and with no spaces. You can use numbers in object IDs, but not as the first character.
The ID should not be the same as the object's name, or the name of any other object in the file.
Note that the players never see an object ID so you can use what you like! But you will be using the ID in events so you should keep it short but informative.
To make it absolutely obvious that it's an ID and not a name, you should pick some standard method of coming up with IDs. The one I use for all Sol objects is to start the ID with the object name then add something to make it unique or to determine what kind of object it is. For example, sargeur_abs means an abstract object called sargeur, monument329st means a static object called monument in location 329, flower2_abs means it's number 2 of a series of flower objects, winston_mob is a mobile, and so on.
The objects are listed in the editor in alphabetical order by ID which is why giving them an ID which is meaningful is a jolly good idea.
If you try to use an ID which is already being used by another object, or if you fail to set an ID, the editor won't let you save the object.
Object Description
A description of the object, up to 232 characters long.
You cannot have paragraph breaks in the description, and it's quite short so you can't be too verbose. However if you want to add some text in a separate paragraph, or just need room for extra words, you can use events to replace the object description with text sent by an event. You'll learn how to do that in a later lesson.
An object must have a description and the editor won't allow you to save it without one.
Object Type
You can set the object type as Static, Dynamic or Abstract. The editor defaults to Abstract.
You should set this first because it determines which of the other settings are valid.
Persists
If the Persists box is checked it means the object is defined as persistent - it will not vanish when the game resets but will remain in the player's inventory. The default is for the property to be set. This only applies to abstract objects; you cannot set it for static or dynamic objects.
Visible
This defines whether the object is visible or invisible. If it is visible then players will see it in the room - that's the default. If it's not visible, it means it won't show up in the room. However, if it's a dynamic or abstract object and it ends up in a player's inventory, it will be seen there. So invisible objects are most likely to be static objects.
Invisible objects have a number of uses, the most common being that you can attach commands to them, which you will learn about in a later lesson.
No TP
The No TP setting determines whether a player can teleport while carrying the object in her inventory. If it's set, she won't be able to. This would most commonly be used for puzzle objects.
It's only relevant for abstract and dynamic objects, and it defaults to not being set.
Object Article
The object article relates to how the object is referred to in the game when it appears in a room or in an inventory - whether it has the word 'a', 'the' or 'some' added to the name. There are four options: No Article, Indefinite Article, Definite Article and Plural. The editor defaults to the indefinite article.
For those that have forgotten their grammar lessons at school, here's what those options mean.
If an object has no article, it does not have anything added to the front of it when it shows up in the game. For an object called Diesel's baseball bat, the game displays:
You can see Diesel's baseball bat.
You would use this setting for mobiles.
Setting indefinite article uses 'a' or 'an', so for an object called hologram, the game displays:
You can see a hologram.
While definite article uses 'the':
You can see the Statue of Liberty.
Plural is used if the object is more than one of whatever it is - rocks, rats, chocolates:
You can see some chocolates.
Note that you would use the plural property for 'chocolates', because there is more than one choccy, but not for 'box of chocolates', because there is only one box.
You can only set one of these properties, since they are mutually exclusive.
Start Location
The location number where the object will appear on the map. Abstract objects should be left at zero, which is your storeroom (or should be!).
Size
This is an optional variable that has different meanings depending on what the object is - ie how long is a piece of rope, how many bullets in a box, how much water is in a bottle, how many uses something has, etc. You use it with events which will check the size, change the size and so on.
This means you can define objects which will run out after so many uses, like a bottle of water or a box of chocolates. You can also use objects as a general counter, to keep track of things the player is doing.
Unless you intend to write events that use the size, just leave it set to 1 (the default). Do not set it to zero.
Weight
Pretty obvious - the weight of the object*. Players can carry 1/3 of their strength, so a player with a strength of 35 could carry eleven objects that all weigh 1 - or one object weighing 11. Remember that a player could have a strength as low as 20, restricting their carrying capacity to 6, so you need to take this into account when designing puzzles that involve using objects.
If the object is a static object there's no need to set the weight, because it can't be picked up, anyway; leave it set to the default of 1. Don't set it to zero because all objects must have some weight, otherwise they would just float away.
* Technically, it's the mass, not the weight, since gravity varies throughout Fed DataSpace. But let's not get picky!
Vocabulary
This is the special bit. Here is where you can assign any command you like to an object, and then specify which event should run when the player types that command. The command should be one word, no space, all in lower case, for example: open. The event should include the category and section numbers in the form objects.umbrella.1 and should also be all lower case.
You will learn more about commands on objects in a later lesson.
Movement
The big grid panel isn't implemented yet, but there are three fields that relate to mobile movement: Speed, Low and High. You will learn how to make your mobiles move in a later lesson.
FILE MANAGEMENT FOR OBJECTS
Obviously, you want to save your work frequently to make sure it doesn't get lost. There are two different levels of file management for objects:
· The buttons at the bottom of the screen and the 'Edit' menu are used to manipulate the current object
· The 'File' menu contains options to manipulate the whole file.
Defining a New Object
If you have no object file loaded then the object form will be blank and you can just start adding the data to define your object.
If you have an object file loaded and you wish to create a new object to go in that file, use 'Edit|New Object' and this will put up a blank form ready for your data.
When you've finished defining the object, click the 'Add Object' button and your new object will be placed in the object file.
Cloning an Object
If you want to define several similar or identical objects, you can base a new object on an existing one from the file, to save you typing in all the data again. Select the object you want to use from the list, make the necessary changes, and then click the 'Add Object' button to clone it.
Don't forget to change the object ID because the editor won't let you save the object with the same ID as an existing one.
Changing an Existing Object
To modify an existing object, select the object from the list, make the desired changes, then click the 'Update Object' button to save the changes to the object file and overwrite the old information.
Deleting an Object
To remove an object from the list, use right-click on the object in the list and select 'Delete Object'.
Saving and Loading the Object File
The 'File' menu has options to save the object file you are working on to disk, to load a new file, to save the file under a different name, and to start a new file. These are all self-explanatory.
Exiting the Object Editor
To close down the object editor simply close the window or use 'File|Exit'. If your currently displayed object has not been added to or replaced in the file you will be prompted to do so; if the object file hasn't been saved, you'll be prompted about that, too.
4.3 ATTACHING COMMANDS TO OBJECTS
This lesson explains how to attach a command word to an object so it can be manipulated other than with the standard get and drop commands. This means you can have events that are triggered by commands the player types, which allows you to do all kinds of fun things on your planet.
HOW TO SPECIFY A COMMAND
If you look at the object editor, you will see at the bottom of the screen is a panel labelled Vocabulary. This has two columns: Command and Event. To attach a command to the object, you simply type in the word that will be the command, and the event that should be called when the player types the command together with the object's name. For example, if an object is called lever, and it has a command "pull", then the event will be called if the player types 'PULL LEVER'.
Ok, that's the easy bit. Deciding how to use this is not quite so simple. First you need to know how object commands work.
The command that the player types is one word - usually a verb - followed by the name of the object. For example, "enter sportster", "climb tree", "play jukebox", "slide shelves", "enter police box".
What the event actually does is not discussed in this lesson - in theory, the event could do anything, using any of the currently available scripts! A few ideas are given in the later lessons.
CHOOSING COMMAND WORDS
You need to think carefully before deciding what command words to add to your objects. It's no fun to play "hunt the syntax", having to try to guess what command might work with an object - that's just frustrating for the player. So if an object has a command word attached to it, it's got to be something that the player can work out easily. It could be something totally obvious and logical - like "climb tree", "read notice" or "open umbrella". A good general command is "use" which applies to lots of objects.
If the command is not so obvious then you could mention it in the object's description, or in the location description where the object is found.
Of course, you won't always want to be upfront about what an object is used for. In a puzzle, the player could be given the information about what to do with an object elsewhere, or have to figure it out as part of the puzzle.
The command should also be a command that sounds natural - don't use tortured grammar in order to make something work. Since a command has to include the name of the object, it will usually be a simple verb-noun command, as listed above. There are ways to get more complex, which are explained below, but in general if the command ain't a verb, don't use it.
You can have up to 20 commands attached to one object. The commands can do different things, by calling different events - for example there might be a different response to "drop glass" and "throw glass". Or you can have more than one command having the same result. This offers synonyms which will make it easier for the player to figure out the right command - "press button" and "push button" mean the same thing so the two commands call the same event.
USING COMMANDS TO OVERRIDE NORMAL ACTIONS
The normal actions for a dynamic object are "get" and "drop". You know what those do! But if you want something else to happen when players pick up or put down an object, then put "get" or "drop" in the command list, with an event that does whatever you want it to do.
This event will completely override the normal action. Usually, getting an object means the game will move it from the floor into your inventory, give a message to confirm you have picked it up, and tell anyone else in the room too. However, if you put a "get" command on an object, none of those things will happen - the object will stay exactly where it is. The only things that will happen are those things your event causes to happen.
Note: If you do put a "get" command on an object you should also use the command "take" to call the same event, since the commands do the same thing in the game.
Likewise, for a drop command, the normal action of the object being moved from your inventory to the floor will not happen if you put a "drop" command on the object - just what you specify in the event.
Many of the role-playing objects in Sol have events that override the standard drop command - the object gets destroyed, rather than falling to the ground. You will learn how to do that in a later lesson.
Note that there are scripts that will allow you to simulate the process of getting and dropping an object, by moving the object from the floor to the player's inventory and back again, and as you have probably guessed, there is a lesson about them coming up later too.
Commands attached to objects will override normal game commands that don't have anything to do with objects. For example, putting "buy" onto an object called "round" will work even though that's a command with another use in the game. Just like one-word commands on locations, your object command takes precedence and overrides the standard game response to the command. This means you must be careful that the verb-noun combination is not used in such a way as to prevent a player playing the game as usual. To use a silly example, don't put an object on your planet called "factory" with a command "display" attached to it, because it will overwrite the actual 'DISPLAY FACTORY' command!
REPLACING AN OBJECT'S DESCRIPTION
One useful thing to do with an object command is to replace the object's description with text sent by an event, by putting an "examine" command onto the object. This means you are not restricted to the small size of the object's description, and you can have more than one paragraph sent when the player's examines it. You could also vary the description if there was some condition attached to the object's appearance - an umbrella's description would be different if it was open or closed, for example.
The event that is called will simply use the message script to send one or more paragraphs of text.
Don't forget that there are actually two commands to see the description of an object - "examine" and the abbreviation "ex". You will need to put both of those commands on the object, calling the same event.
Although the description of the object will now be handled by events when somebody examines it, the actual object description is still used when the owner wears it or carries it, and another player looks at them. So unless it's a static object, you do still have to provide a description.
COMMANDS AND INVISIBLE OBJECTS
Do you remember how I explained, back in the lesson on creating objects, that if you did not set the Visible property then the player won't be able to see the object? Well, here is the reason why that is useful.
Instead of having a visible object which the player can examine and manipulate, the object itself can be invisible, and information included in the location description telling the player that there might be something that can be manipulated. As far as the player knows, the command is being attached to the location itself - she doesn't even need to know the object is there at all, or that such things as invisible objects exist.
So if there's a lever the player can pull, or a button she can press, or a flower she can smell, it doesn't have to be a visible object at all, but instead can be described in the location description. The invisible object must be a static object so it cannot be picked up and carried off.
Players can still examine invisible objects, so you need to give a sensible description to the object, even if it is only there to be manipulated in some way.
The hovercab ride from the Earth hospital to the spaceport uses an invisible object called "cab" with a command "hail" on it, so when the player types 'HAIL CAB' the cab ride event is triggered; and most of the elevators in Sol have invisible buttons that you can press to make them go up and down.
You can, of course, use invisible objects that have commands on them to give yourself your own set of secret commands - just don't tell anyone, and make sure they can't be easily guessed!
USING INVISIBLE OBJECTS FOR MORE COMPLEX COMMANDS
Object commands have to be one word, followed by the name of the object, so they have to be simple verb-noun commands. But... actually, they don't, because there is a way to get around this restriction. You can see an example on Titan, where there is a fountain, a visible object. But you can use the command "get in fountain". How come?
That's because there is also an invisible object called "in fountain" with the command "get" attached to it. The player need never know there an object with such a silly name - it is there simply to make the command for the visible object easier to type, and sound more natural. In other words, you are using invisible static objects to provide synonyms, so that the player can type a command in several different ways to get the same result.
Just in case some clever-clogs player figures out how this is done, and tries to examine the "in fountain" object, the description of the object is set to the same message you get when you try to examine something that isn't there:
I can't find anything called in fountain in the vicinity!
The only snag with this is that the object will also be invisible to you - so if you've made a mistake in your event, and nothing happens when you test it, you won't know if it is because the event is not being triggered, or if the object isn't there at all! To get around this you can use event tracking ('SET TRACKING ON'), which you learned about in an earlier lesson, because invisible objects will show up if you have tracking turned on.
NON-OBJECT COMMANDS
The concept of commands on invisible objects can be taken one step further, by allowing you to add commands to a location that have nothing whatsoever to do with objects. An example is used when a player gets into the hopper, to visit the wilderness on Earth: before the pilot will fly off, the player has to type "buckle up". This is done with an invisible object called "up" which has the command "buckle".
Note that if you are going to do this, you must tell the player what she is expected to type, so she doesn't have to play hunt the syntax.
4.4 HOW TO ADD YOUR OWN PRIVATE TELEPORTER TO YOUR PLANET
This lesson teaches you how to add a teleporter to your planet which gives you a secret shortcut. It builds on previous lessons about moving players and secret commands.
WHY DO YOU NEED A SECRET TELEPORTER?
If you get tired of walking around your planet, then you can add a teleporter that will let you jump between your significant locations, such as the landing pad and your office. You could make the teleporter freely available to all visitors, in which case it works like other methods of transportation. But you can also keep it a secret so that only you and your closest friends can use it.
Even if you have a game teleporter, building your own on your planet can be useful because it will allow you to teleport to shielded locations or to carry shielded objects.
A secret teleporter really becomes useful when you start to write puzzles. Testing a puzzle can be arduous, and walking backwards and forwards across the puzzle area to test things over and over is tedious. A method of jumping directly between significant locations even if they are teleport shielded will speed things up considerably. If the teleporter is just intended to be used for the testing phase, you can take it out once you're happy with the puzzle.
Unfortunately it's not possible to use this kind of teleporter to teleport to another planet, even if it is in your star system. You'll have to buy a real one for that!
SETTING UP A TELEPORTER WITH TWO LOCATIONS
Here's how you set up a secret teleporter that moves between two locations. To start with, decide which locations it should operate between, and make a note of the location numbers. For example:
LP - 260
Office - 343
Next, decide what the command should be to use your secret teleport. For a simple two-location teleport, you can only go to one place from each of the locations, so the command does not have to be complex - how about 'TELEPORT ME', which you do with an invisible object called "me" and the command "teleport". Of course, you could also do this with a one-word command on the location - 'TELEPORT' - but you will see why it's best done with an object in a moment.
The event called by the command uses move to send you to your destination:
move script: what player: to whom individual: location 343
It can be accompanied by a message describing what is happening, but if you are the only one who is going to use the teleporter then it's not really necessary to add an explanation, since you already know what's going on!
To provide for the return port, you put another object in the other location, with the same command, which calls an event to move you back again. Although you give the objects the same name, remember that they have to have different IDs.
A MULTI-LOCATION TELEPORTER
If your teleporter services more than two locations, then things do get a bit more complicated because there will be several possible destinations from each location. Let's add a couple more to the list:
LP - 260
Office - 343
Bedroom - 411
Mountaintop - 1240
Now you have a choice of three destinations from each of these locations, which means more than one command is needed; each command will move you to a different destination.
In this case, coming up with the object name and the command words is not so simple. Since the commands that you type to make something happen are usually of the form "verb noun", and since for simplicity's sake it is best to have one object with three commands on it, rather than three separate objects in the same room, you will have to settle for something clumsy. My usual method is an object called "jump" with commands that define the destination, "office", "bedroom", etc. This means you type 'OFFICE JUMP' to get to the office, 'MOUNTAIN JUMP' to get to the mountaintop, and so on. Not very elegant, but since it's a secret convenience just for you, I guess it doesn't have to be!
All you need to do is write four events, each one of which moves you to one of the destinations. Then put an invisible object in each location, each one with three commands on it, that let you teleport to the other three locations. So long as you don't tell anyone, and so long as you didn't pick commands that are easy to guess, you have your own secret teleporter.
A TELEPORTER BRACELET
You don't have to put the commands on a static object - you could use a dynamic object which you carry around with you; your own personal jaunting belt or transporter controller. Use the same name and commands as before, but this time you only have to make one object.
Just make sure nobody else finds it before you do! You could make it invisible so only you would know where to find it, or you can put a checkforowner script on it to stop anybody except you from using it.
Also don't try to use it on other planets, because who knows where you might end up!
4.5 SELLING CUSTOM FOOD
This lesson teaches you how to offer your own special food or drink in your bars, to replace the boring pizza on sale everywhere else. It uses techniques you already know about - an invisible object to attach the command to, checking money, changing money and stamina, and sending messages.
HOW TO SELL YOUR OWN MEALS
If you've worked your way through all the previous lessons in the Workbench manual then you should already know how to do all of the individual bits that make up the food-selling events. All I need to explain is how they all fit together.
The Command
The usual command in a bar that players use to get food is 'BUY FOOD'. To provide your own alternative to pizza, you need to hijack that command. You do this by putting an invisible static object called "food" in the room which has a command of "buy" on it. You should give the object a description that explains what the food is, in case anyone tries to examine it. You should also put information in the room description explaining that the bar has something different from pizza on sale.
The event that the command calls will replace the usual game action.
Cost and Nourishment
When deciding how much to charge for food, and how much stamina a meal offers, you should stick to the standard game conventions: that is, food costs 10 groats and gives 5 stamina, and drinks cost 5 groats and give 2 stamina. Only change that if there is a very good reason, and if your food costs more than the usual make sure it's clearly stated in the location description so the player knows what she is buying.
Feed the Hungry
Here's what the food events do:
1) Check the player's bank balance using checkmoney, to see if she can afford the meal.
2) Refuse to serve her if she can't afford it, using message.
3) If she can afford the meal, take the money using changemoney. Don't forget to use a negative number, since you are taking money away.
4) Serve the meal, using changeplayer to give her a 5 stamina boost.
5) Tell her about it, using message. The message needs to describe the food being delivered and also the process of eating it, since that's the way meals work in Fed.
The events for the special food on sale in Godot's snack bar on Earth look like this:
Start event: #1
Comment: buy food - Godot's Snacks - 1105
checkmoney script: amount 10: higher food.godot.2: equals food.godot.2: lower food.godot.3
End event: #1
Start event: #2
Comment: Feed the hungry
changemoney script: amount -10
changeplayer script: stamina 5
message script: type single: to whom individual: low food.godot.1
End event: #2
Start event: #3
Comment: Not enough groats
message script: type single: to whom individual: low food.godot.2
End event: #3
And here are the messages used:
<para number='1' comment='Buy food - Godot - 1105'>
You point to a small blue cephalopod, swimming in a tank with many other alien sea creatures, and tell the waitdroid you want that one. He pulls it out using tongs and puts it onto a plate. The squid-like creature tries to crawl away but before it can escape you bite into it, releasing a flood of inky juice which glides down your throat like silk. There's a lot to be said for exotic alien foods!
</para>
<para number='2' comment='Not enough groats'>
You try to attract the attention of a waitdroid, but they can all see you can't afford to eat here, so they ignore you.
</para>
MULTIPLE MEALS
If you want to get ambitious, you can offer more than one dish. All you need is a command for each choice - "buy burger", "buy chicken", "buy spoo" - each one provided by an invisible static object.
You do need to tell the player what's on sale and for how much, so she knows what commands to use. You can include the information in the location description or put a visible object in the room with a description that will tell her what's for sale - a menu or a noticeboard. Add a "read" command to the object to give yourself more flexibility in the menu on offer.
CUSTOM ROUNDS
But what about the 'BUY ROUND' command, I hear you cry! It is, after all, the most important command in the game. Surely you can customize the sale of drinks offered in rounds.
Well... yes and no. Yes, you can replace the 'BUY ROUND' command with your own customized version, but only if you want to offer free drinks. And the drinks won't boost anybody's stamina except the buyer.
The first problem is that when a player buys a round, the bit of the game code that runs events has no way to figure out how much the round should cost because it does not know how many people are in the room. This means you cannot charge for the round of drinks.
Of course, there's no reason you can't offer free drinks, either for a special occasion like a party or a holiday, or all the time. The events are simplified, because you don't need to check or change money.
The second problem is that the changeplayer script only changes the stats of the player triggering the event. But it's still worth customizing your drinks.
Here's what you have to do:
1) Boost stamina - use changeplayer to add 2 stamina - at least the instigator will get the benefit.
2) Use message to tell the buyer that she has bought a round of drinks.
3) Use message again to tell everyone else in the room that someone has bought them a drink. Set the "To whom" paramater to "room_ex". Don't forget to include the %s code in the message for the name of the player who bought the round.
The event looks like this:
Start event: #2
comment: CDs - buy round
message script: type single: to whom individual: low xmas06.food.2
message script: type single: to whom room_ex: low xmas06.food.3
changeplayer script: stamina 2
end event: #2
And the messages:
<para number='2' comment='CDs - buy round - player'>
Diesel is serving free drinks this Christmas, and you order up a round for everyone in the bar. A waitdroid brings a tray full of mugs of spicy mulled wine, steaming hot, which you find both delicious and warming. When you've finished, the droid takes the mug back to the kitchen to be washed and re-used.
</para>
<para number='3' comment='CDs - buy round - roomex'>
Diesel is serving free drinks this Christmas, and %s has just ordered up a round for everyone in the bar. A waitdroid brings a tray full of mugs of spicy mulled wine, steaming hot, which you find both delicious and warming. When you've finished, the droid takes the mug back to the kitchen to be washed and re-used.
</para>
4.6 MOBILE CONVERSATIONS
This lesson explains how to add a talking object or mobile to your planet, which players can converse with. This uses text from the message file, and some new scripts to analyse what the player says to the mobile.
Whether your mobile moves around or not, it will be a static object, which means the player can't pick it up and carry it away. You cannot talk to an object in your inventory.
DECIDING IF YOUR MOBILE SHOULD TALK
Not all mobiles will talk. Obviously, animals won't - with the possible exception of genetically engineered beasts, or parrots, although it's unlikely players would get anything useful out of them! Some objects will - machines and computers, for example. You see how the distinction between objects and mobiles blurs...
Not all human mobiles will talk, either. Some just won't want to talk - they will be too busy, or too unfriendly. Others will talk, but reluctantly - players will have to bribe them, buy them a drink, be introduced formally, or do them a favor before they will consent to talk. Or perhaps they will only talk to people of a particular rank or gender.
Even if your mobile will talk to players, it may have different sets of information it will give under different circumstances. Maybe it's more forthcoming to female players, or to those who can prove they have a right to the information.
But for this lesson we are going to deal with an ordinary mobile who will talk to everyone.
It is only possible to make a mobile talk if it has a name which is just a single word. Diesel, receptionist, weeble - all those will work, but Ambassador Molari will not.
DECIDING WHAT YOUR MOBILE SHOULD SAY
In order for a mobile to talk, you need to write the words of the conversation - the dialogue. But unlike the script of a play or a film, a mobile conversation is not a linear speech, it's a set of paragraphs which the mobile will speak depending on what the player says to it.
Mobiles talk in response to a word or phrase typed by the player, called the magic word. You need to decide what your mobiles will say if asked about certain things. Before you can write your own mobile conversation you should talk to some of the more chatty mobiles in Sol, such as Diesel on Mars or Tracey on Phobos, so you get the idea about how the process works and how the conversation flows.
Some mobiles will have some obscure information relating to puzzles, which they won't yield up without being asked something very specific; this kind of information should not be attached to obvious keywords but should only be available to players who have found out from elsewhere what to ask about. We don't want players to be able to take shortcuts in puzzles.
However, the majority of mobile conversations won't be that critical; they will be giving background information, trivia and gossip. In order to cut out player frustration, there are some conventions you should follow when deciding what your mobiles should say, and these are described below.
THE MAGIC WORDS
It is important that the conversations you design for your mobiles should give players some idea of what words might yield results; players will soon get bored and frustrated if nothing they type works.
The most important magic word, that all talking mobiles should respond to, is "hello". The mobile's answer should give some hints on other subjects by containing important words which lead to more conversations.
Other words that mobiles should respond to are: "who" as in "who are you", and "job" or "work" which should make the mobile respond with information about its profession. Mobiles should also always respond to the name of the planet they are on.
There are other standard topics that most mobiles should be able to converse about, and which players can use as a starting point for their conversation. In general, a talking mobile should respond to at least two of the following:
· The location that the mobile is in - pub, office, shop, etc
· Other people or things in the same location - objects, other mobiles, something mentioned in the location description, etc
· Other mobiles on the planet - you can have different mobiles making bitchy remarks about each other
· The planet name
· The system name
· Your name, as the owner of the planet
Not all mobiles will talk about all of the above, but these ideas give you some starting place when designing your mobile conversation. The more magic words that the mobile responds to, the less chance of the player being frustrated.
If you want to make sure players know what to talk to your mobile about, use the magic word "help" and have the result be a list of the topics that produce a result. For example, "Gorx will talk about Titan, Earth, Ming, Sol, croquet, politics, ballet, and tentacle gloss among other things."
Obviously you wouldn't list anything to do with puzzles, but you would include all of the general things the mobile talks about, to give people a start.
Note that this is a new idea which is not yet in use in the game - I will be going over the Sol mobiles to add this feature to their conversations shortly.
You can use the same piece of text in response to more than one magic word - for example, if you want to ask Diesel about the location she is in, she will respond in the same way to "bar" and to "chez diesel".
For this lesson I am going to teach you how to make a standard mobile that will talk to everyone and will give the same information to all players, using Diesel as an example. The proprieteuse of Chez Diesel on Mars is an incredibly chatty mobile, who talks about a whole range of topics. Her conversation is designed to follow on, one statement after another. She responds to a lot of the standard topics for Sol mobiles: Mars, Chez Diesel, Ming, the Cult of Gaelaan, and so on. Each reply she gives suggests other subjects she might respond to. Go and talk to her and see how the conversation flows. At the end of this lesson, I have listed all of the magic words that Diesel responds to.
USING DIALECT
Although most of the text you will see on the planets in Sol is written in good, standard grammatically correct English, and although the same should apply to your own player planet, when writing mobile conversations you can relax and have a bit of fun. People rarely talk grammatically, they don't finish their sentences, they use words incorrectly, and if they are an alien they might talk very bad English, so you can write the text for a mobile conversation accordingly.
As an example, just think of the way Yoda talks in the Star Wars movies! Mmm, strange sentence construction he has, yes? Also look at Tracey on Phobos: she talks her own peculiar version of teen slang.
WRITING THE CONVERSATION
When you are designing your mobile conversations you will need to do some planning in order to keep the conversation straight when writing the events. It's a good idea to write out the text for each of the responses the mobile will give, with each of the magic words that will elicit that response, rather than just to dive right in and write the events.
Each response can be as long or as short as you like - one line or a whole bunch of paragraphs. However, to avoid scroll, it's best to keep each individual reply down to no more than 3 or 4 paragraphs.
The responses - the actual words you want the mobile to say - go into the message file for the map. You should already know how to put text into a message file. If you need to, go back and read the relevant lessons from the Basic Workbench manual to remind yourself.
HOW MAGIC WORDS WORK
A magic word can be a single word, or a phrase. When the player types the mobile's name followed by some text, the game matches the text against the magic words you specified. If it matches, then the appropriate paragraph from the message file is sent.
The game will stop when it finds the first match in the player's input, so if her text contains more than one magic word, she'll only see the results for the first one. Note that this is one of the very few cases where the game stops in the middle of an event without running all the scripts.
Getting the magic words in the right order
The game does not insist the magic word be the only thing the player types - if her input contains the magic word somewhere then it counts as a match. This makes it easier on the player trying to have a conversation with a mobile, but it can lead to some unexpected results if you don't take it into account when you write the conversation events.
For example, if your mobile knows about Ming, it might have magic words Ming and Emperor. If the player types "Ming the Merciless", that is a match; so is "the old emperor". However, if the player types the words "mingle", or "calming" - those would also match.
Similarly, a magic word of bar means that if the player types "barrel", "barbarian" or "handlebar", it will be a match. You therefore need to take care not to use magic words that are too short, because they are likely to cause confusion.
If you have a good reason for having both bar and barrel as magic words in the same event, make sure you put the longer one first in the list. If the player types barrel, then it's a fair bet she is interested in the container for beer and not the pub. Since the game will stop at the first match, that's the result she will get; only if she types barrel in full will she learn about the container that ale is kept in; bar on its own will fail the first check but match with the shorter term.
Words that are more general, and could be part of a sentence about many different things, should go at the end of the list. For example, Diesel responds to "who" and also to "bob", but if a player were to type "who is bob" she would expect the response for "bob" and not for "who". So "who" and other general words should go after "bob" and similar specific ones.
HOW MOBILE CONVERSATION EVENTS WORK
Once you have the messages written in the text file, you can start constructing the events to make your mobile talk. The events for Diesel are very straightforward, using the basic mechanism for mobile conversations, and just take up one event. Yes, for once, writing the event is the easy part!
Putting the event trigger on the mobile
The first stage is to give the players the chance to have a chat with your mobile. You do this by adding a command to the mobile. The command is the mobile's name - for example, with Diesel the command is simply "diesel" (but without the quotes). Then point the command to an event, which will do the work of managing the conversation. For Diesel, the event is objects.diesel.1.
For the command, you must put the mobile's name all in lower case letters, even if the name actually has an initial capital.
Specifying the Magic Words
The event called by the mobile's name lists all of the magic words the mobile will respond to, and specifies what happens when the player's input matches one of them. The script is match and it has the following parameters:
· The ID or name of the object or mobile
· The magic word
· The number of the first paragraph from the message file you want to send
· The number of the last paragraph you want to send, if there is more than one
· An optional event to call
Many of the scripts that are used with objects and mobiles need you to identify the particularly object or mobile, and they have a parameter where you can type the object's name or the object ID. Which one you use will vary depending on the script. For mobile conversation scripts you always use the ID.
Most of the magic words will simply result in one or more paragraphs from the message file being sent to the player, and that is what this basic lesson will concentrate on, so leave the "Event to Call" parameter blank.
To send one paragraph of text from the message file, type the paragraph number into the "Low" parameter:
match script: id/name diesel_st: phrase hello: low objects.diesel.1
If the mobile's response has more than one paragraph, you specify a range of paragraphs by also typing the highest paragraph number into the "High" parameter:
match script: id/name diesel_st: phrase hello: low objects.diesel.3: high objects.diesel.4
Just like using the message script, you can only send a range of paragraphs - ie 3 to 6 - you can't send paragraphs 3, 5 and 7.
The mobilematch script is repeated as many times as necessary in the event for each of the magic words:
match script: id/name diesel_st: phrase hello: low objects.diesel.1
match script: id/name diesel_st: phrase job: low objects.diesel.3: high objects.diesel.4
match script: id/name diesel_st: phrase bar: low objects.diesel.5: high objects.diesel.7
match script: id/name diesel_st: phrase chez diesel: low objects.diesel.5: high objects.diesel.7
match script: id/name diesel_st: phrase mars: low objects.diesel.8: high objects.diesel.11
match script: id/name diesel_st: phrase earth: low objects.diesel.12: high objects.diesel.13
and so on. You can see that the same text is being sent by two different magic words, bar and chez diesel.
Magic words must always be typed in lower case in the script, otherwise the game won't be able to find a match.
If There's No Match
A mobile conversation event also needs to provide for when the player's text doesn't match any of the magic words, using nomatch. This also lets you call an event or send one or more paragraphs of text from the message file:
nomatch script id/name diesel_st: low objects.diesel.43
or
nomatch script id/name diesel_st: low objects.diesel.43: high objects.diesel.44
This goes at the end of the list of magic words. If you leave this script off, then there will be no response at all to a non-match which will be confusing for the player, so make sure there's something here.
Remember that the match scripts and the nomatch script all go in the same event, in one long list, with the nomatch last.
And that's all there is to a basic mobile conversation.
MAKE ANYTHING HAPPEN
Instead of sending a paragraph of text from the message file, your match or nomatch scripts can call an event which can contain just about any other script. The conversation might result in the mobile giving something to the player by creating an object, or opening a door, or moving the player. The nomatch event might have the mobile refusing to talk any more, or even moving away.
THE MESSAGE FILE AND EVENTS USED
Here is an extract from the message file showing some of the things Diesel has to say:
<section name diesel'>
<para number='1' comment='hello'>
Diesel smiles a broad, welcoming smile and says, "Hello my friend. Welcome to Chez Diesel, the Social Center of the Solar System, the best bar in the known Galaxy, and the only place worth visiting on Mars."
</para>
<para number='2' comment='bye'>
"It was good chatting with you, dear," Diesel says. "You come back here soon, there's always a barstool waiting for you." She turns to another customer.
</para>
<para number='3' comment='diesel/who/job/profession'>
She laughs a big, booming laugh which makes the glasses on the tables rattle. "Oh come on," she says, "everyone's heard of me. I'm the most famous bar-owner ever. I've been running this bar since the early days of the colony on Mars.
</para>
<para number='4'>
"If you haven't heard of me, you're either a real newbod, or you've been living with your head in a bucket."
</para>
<para number='5' comment='bar/social center/chez diesel'>
"Chez Diesel is my pride and joy," Diesel says, with a misty look in her eyes. "Way back when Mars colony was just a rough collection of habitats, I opened the bar to cater for the spacers who came visiting. It was a rough place then, to quote the song, just a noisy hall where there's a nightly brawl. And boy, what brawls we had!
</para>
<para number='6'>
"I had to replace the furniture every couple of weeks, because the drinkers were always hitting each other over the head with chairs and tables when they started to fight, but that was just part of the cost of doing business. They were cheap plastic chairs of course. My baseball bat saw a lot of use back then, and many a space helmet had a bat-shaped dent in it." She picks up the bat and strokes it lovingly for a moment.
</para>
<para number='7'>
"Then Mars became the booming settlement it is today," Diesel continues, "the colony expanded, and my clientele changed - we really went upmarket. I had to redecorate the place, installed the fountain, hired a pianist and so on. I make a helluva lot more money now, but sometimes I miss the fun of those early, hell-raising days." She sighs nostalgically and places the bat back on the bar.
</para>
Here is part of the event for the conversation with Diesel:
Start event: #1
comment: Talk to Diesel
match script: id/name diesel_st: phrase hello: low objects.diesel.1
match script: id/name diesel_st: phrase bye: low objects.diesel.2
match script: id/name diesel_st: phrase job: low objects.diesel.3: high objects.diesel.4
match script: id/name diesel_st: phrase profession: low objects.diesel.3: high objects.diesel.4
match script: id/name diesel_st: phrase bar: low objects.diesel.5: high objects.diesel.7
match script: id/name diesel_st: phrase chez diesel: low objects.diesel.5: high objects.diesel.7
(and so on...)
<nomatch diesel_st: low objects.diesel.43
end event: #1
And here is a list of all the magic words Diesel responds to:
hello, bye, job, profession, bar, chez diesel, mars, earth, martians, alien, ruins, drink, ale, beer, old peculiar, recipe, pizza, moose, food, ming, executive services, voucher, lv, fountain, pianist, arcturian, galactic admin, pegasus, gaelaan, religion, diese, bob, leather, clothes, outfit, bat, waitdroid, pirate, monty, snark, diamond, opal, pearls, talk, selena, chez, venus, moon, titan, castillo, mercury, phobos, decor, roof garden, piano, who, free
Phew, I told you she was chatty!
4.7 VARIATIONS ON MOBILE CONVERSATION
This lesson tells you about some of the other things you can do in conjunction with a basic mobile conversation, to make things more interesting.
CALLING EVENTS
The basic conversation uses the match script to pull one or more paragraphs of text out of the message file and send it to the mobile window. But match also has a parameter to call another event, and you can use this as well as, or instead of, the message file paragraphs. This means you can combine your basic conversation with any other scripts you want. Nomatch also has this parameter.
If you do both, then the text from the message file is sent before the event is executed.
USING MOBILE CONVERSATION TO SIMULATE A COMPUTER OR KEYPAD
A mobile that has some conversation events on it does not have to be something you would actually talk to. You can use the same events to simulate a computer, where the player types text onto a keyboard some of which works and some doesn't; or a keypad where the player types a number as a password. You do this by having an invisible static object called "type". The command the player uses to operate it is 'TYPE input' and the game will analyse the input and compare it to the magic words in the mobile conversation event.
For example, consider a door controlled by a keypad where the player has to type the correct code number, which is 1234. If she types any other number, the door will not open - only the number 1234 will open the door.
In this case, you write a mobile conversation event using a match script that checks for the magic word 1234. This calls an event to open the door. The momatch script takes care of anything else the player types, by sending a message telling her entrance is refused.
A computer would work in exactly the same way, but would probably have more than one magic word.
CHECKS AS PART OF CONVERSATIONS
You can vary what a mobile says by checking player attributes, such as the gender or rank. A very simple example is to have the response to "hello" check the player's gender, and give a different response accordingly. This is what happens when you talk to Blythe in Rotary Offices on Magellan.
Here's the events that do that:
Start event: #1
comment: Talk to the salesdroid
match script: id/name blythe_st: hello: event objects.blythe.2
(and so on...)
end event: #2
Start event: #2
comment: Check player's gender
checkgender script: male event objects.blythe.3: female event objects.blythe.4: neuter event objects.blythe.5
end event: #3
Start event: #3
comment: Send message if player is male
message script: type single: to whom individual: low objects.blythe.5
end event: #4
Start event: #4
comment: Send message if player is female
message script: type single: to whom individual: low objects.blythe.6
end event: #5
<event num='5'>
comment: Send message if player is neuter
message script: type single: to whom individual: low objects.blythe.7
end event: #6
And the messages would give a different greeting:
<para number='5' comment='Blythe chat - hello boys'>
Blythe inclines his head politely. "Greetings, Mr %s," it says. "Welcome to Rotary Offices, supplier of services for the businessman. If you would tell me of your requirements, I will do my best to fulfil your needs."
</para>
<para number='6' comment='Blythe chat - hello girls'>
Blythe inclines his head politely. "Greetings, Ms %s," it says. "Welcome to Rotary Offices, supplier of services for the businessman. If you would tell me of your requirements, I will do my best to fulfil your needs."
</para>
<para number='7' comment='Blythe chat - hello things'>
Blythe inclines his head politely. "Greetings, M %s," it says. "Welcome to Rotary Offices, supplier of services for the businessman. If you would tell me of your requirements, I will do my best to fulfil your needs."
</para>
GIVING A MOBILE DIFFERENT CONVERSATION SETS
Now you know how to vary a mobile's response to a particular magic word, using a check of some kind - for example, to make the mobile greet men, women and neuters differently. But it is also possible to provide entirely different conversations for each outcome of the check, with a completely separate set of magic words and responses. You do this by having the check before the event listing the magic words. You can then have a different set of magic words, and text messages, for each outcome.
Imagine a mobile that will only give cursory information to most players, but is fascinated by the idea of owning a business, so will chatter on at length to an Industrialist. Or a mobile that will flirt outrageously with a player who is the gender he/she/it finds attractive, but be business-like otherwise.
There are no examples of this in the game at the moment, but you should be able to work out how to do it... if not, ask for help.
OTHER EVENTS...
Actually you can run just about any script as part of the events that make up your mobile conversation. You are limited only by your imagination in thinking up ways to link scripts together.
SPECIAL MOBILES
One more word about mobiles: if you put a mobile (or a static object) on your planet called "registrar", then players will be able to get married in the location where the registrar hangs out.
4.8 MAKING MOBILES MOVE
This lesson tells you how to make mobiles move around a map.
DESIGNING YOUR MOBILE
A mobile can only move around on one map - you can't make it jump from one planet to another. It goes in the object file attached the map you want it to travel through - so an object moving around on the planet Bodville will go in the file bodville.xob.
You start by creating the mobile in the object editor and provide all the usual information - name, description, ID, start location and so on.
You must set the object type as Static. I know, it sounds strange when you want it to move, but otherwise players would be able to pick it up and carry it off which would cause terrible problems.
SETTING THE MOVEMENT BOUNDARIES
Look at the map and decide on the area through which you want the mobile to move, then type the lowest numbered location into the Low field, and the highest numbered location into the High field.
Make sure you set the Start location which must be somewhere in the movement area. If you don't set it, the mobile will start off in your storeroom and never be able to get out.
SETTING THE SPEED
To set the speed, you type a number into the Speed field. It defaults to zero which means the mobile will never move. The speeds are in increments of 30 seconds. Type 1 to make the mobile move every 30 seconds, 2 for 60 seconds, and so on. 120 means it will move every hour. There's an upper limit of 1000 on the speed - that's approximately 8 hours which should make it move slower than the slowest Centauran snail. (That means the mobile will move approximately three times in a 24 hour game session.)
You need to think carefully about what speed you set. 30 seconds is not a lot of time, and the mobile will zip in and out of locations before players have a chance to notice it, let alone do anything with it. Even if all they can do is examine the mobile and read the description, 30 seconds means they will need fast reflexes. So unless you want to make the mobile uncatchable, slow it down!
If you intend the player to have extensive interaction with the mobile, such as a conversation, you need to make it very slow. It would be extremely frustrating to have the mobile suddenly walk off in the middle of a chat. How rude!
RECAP ON HOW MOBILES MOVE
Here's a reminder on how mobiles move.
When the game fires up, the mobile will be sitting in the start location. After the appropriate time as designated by the speed value, the game will randomly select a direction from the eight compass directions to move it in (it ignores up and down, in and out). If there is no exit in the direction it chooses, the mobile will not move at that time. It will also remain where it is if the selected direction would take it to a location outside the high and low limits.
If the direction selected is permissible, the mobile will move to the new location. It will then wait for the interval determined by its speed, then do it all over again.
Anyone in the location will be told if a mobile moves in or out of the room.
MOVEMENT CONSEQUENCES
There are some things you need to consider when you decide which bits of your planet you want the mobile to move around in:
· If there is only one exit from a location there's only a one in eight chance that the mobile will move, so it could end up staying in the same place for a while.
· The mobile might spend some time moving backwards and forwards between two locations, if the random selections happen to work that way.
· If you have one-way movements a mobile might be able to go into a location but not get out again, leaving it trapped.
· There is a chance that a mobile will never visit some areas of the map even if the numbers do fall within the range, because the random movements could always turn it back before it gets there.
· If there is no connection between areas of the map, or if the connection falls outside the range, the mobile won't ever get there.
As well as making your mobiles move, you can add events to them to make them do all the things that you can do with objects. See the mobiles in Sol for examples!
PART 5 - MANIPULATING OBJECTS
5.1 CREATING AN OBJECT FROM AN ABSTRACT TEMPLATE
This lesson tells you how to make the game create objects from an abstract template. It builds on previous lessons which described the different kinds of objects and explained how to use the object editor.
WHEN TO USE EVENTS TO CREATE AN OBJECT
In real life, if a player buys something from a shop, the item is sitting on a shelf waiting to be purchased. If she picks a flower, the flower already exists along with many others in the garden or in a vase. But not so in Fed DataSpace. Here, the objects do not exist until they are bought, or picked, or given as a gift.
This means the objects don't take up resources because the game doesn't have to store them before they are needed. It also means there is an inexhaustible supply of them - they don't run out, which cuts out the frustration of having to queue up or fight to get hold of an object.
There are examples all over Sol of objects that are created when needed: the catnip, the butterfly net, all of the role-playing objects, charms and so on.
DEFINING THE ABSTRACT OBJECT
You start by defining the object that will be the template for the ones created in the game. Use the object editor to specify its name, ID, description and properties - all the things that determine what the object looks like to the player in the game. Leave it set to visible (which is the default), the object type as abstract, and the start location as 0. Decide if the player should be able to teleport when carrying the object, or not, and if not set the No TP property (it defaults to being unset).
Don't forget to check whether the article needs to be changed - it defaults to the indefinite article (a...) but you can change it to definite (the...), plural (some...) or no article.
You can add commands which call events to allow the player to manipulate it. When the dynamic object is created from the abstract template, it will have the commands from the abstract object on it.
PERSISTENT OBJECTS
Abstract objects default to being persistent, which means they don't vanish when the game resets. You can change them by unchecking the Persists box, in which case the object will be removed from the player's inventory at the next reset.
Most objects should be persistent. Puzzle objects, in particular, need to persist because it means the player doesn't have to figure out what to do with them before the reset, but can hang onto them for however long is needed to solve the puzzle. However, when the player uses the object correctly it is a good idea to get rid of it then, to avoid a whole heap of items in the inventory. You will learn how to do that shortly.
Objects given as prizes for completing some task, such as the snowglobe the player gets for braving the ski run on Titan, should be persistent so the player is left with a permanent trophy of achievement or souvenir of an experience.
Other items, such as role-playing items, can be either temporary or permanent. You should avoid only making important puzzle items permanent, otherwise alert players will be able to tell which objects are important. Make sure some of your red herrings are permanent, too!
In Sol, the only items which are not persistent are food items - they would logically be perishable!
Note that if you later delete the abstract object template from your object file, then any copies of the object in players' inventories will vanish. The same will happen if you DD and your planet is removed from the game.
Even persistent objects vanish at reset if they are left lying on the ground - they only persist if a player is carrying them.
CREATING AN OBJECT
Enough of the theory. Let's get on with actually creating an object from an abstract template. To create an object you use the createobject script, which has these parameters:
· Where: An object can be created in the player's inventory, or in a room. It defaults to "inventory"
· Home Map - the name of the map which has the abstract object being used as a template. Defaults to "home" (this is explained below)
· Object ID: The ID of the abstract object being used as a template
The Home Map
Under normal circumstances, the abstract object will be in the object file for the same planet as the event file, ie bodville.xob and bodville.xev - in which case you can leave the "Home Map" parameter set to "home".
The basic script looks like this:
createobject script: where inventory: home-map home: id sausage_ab
However, it's possible you will want to create objects which come from another planet in your system, in which case you can specify the name of the map it comes from, in the format systemname/planetname - for example newstar/bodville. It should always be typed in lower case. In this case, the script looks like this:
createobject script: where inventory: home-map newstar/bodville: id sausage_ab
Note that if the map you want the object to come from is your space map then you use newstar/space.
Creating the Object in the Room
If you set the "Where" parameter to "room" then you have two more parameters to set:
· Dest Map - the destination map. Defaults to "current" (explained below)
· Dest Loc # - the destination location number, where you want the object to appear
The destination map defaults to "current" which means the map that the player who triggered the event is currently on. That's because usually you want the object to show up where the player is standing. The script will look like this:
createobject script: where room: home-map home: id sausage_ab: dest-map current: dest-loc 567
However, you can cause an object to appear on another of your planets so use the system and planetname, and the script will then look like this:
createobject script: where inventory: home-map home: id statue_ab: dest-map newstar/bodville: dest-loc 543
SHORT CUT TO MAP NAMES
I've just explained that you can use "home" and "current" in the createobject script, but they can also be used in any script that references a map name. You will use them a lot because they save you some typing. So here I will explain them again:
Home - This means the map to which the event file belongs.
Current - This means the map the player that triggered the event is standing on right now.
These short cuts are always typed in lower case.
Which one you use depends on which script you are using and how it is triggered. With the createobject script, the home map where the abstract object belongs is usually going to be the same as the one the event is on, so you can use "home".
If the object is being created in the room, you're usually going to want it to show up in the place the player is standing, so you can use "current".
But when in doubt, you can use the full map name which will always work.
USING OTHER SCRIPTS WHEN CREATING AN OBJECT
The process of creating an object is not all that complex in itself. However, because nothing else happens when an object is created, you are going to want to add additional effects using other scripts. At the very least, you should send a message telling the player that the object has been created and is now in her inventory.
If the player is buying the object from a shop then you will want to charge money for it, using changemoney - which also means checking she can afford it with checkmoney. The process is the same as the events used for the cab ride, except that the final result is the creation of an object rather than a move across the map.
You could make the creation of the object conditional - an object might only be sold to those of a certain rank or gender. Maybe the object is created as part of a mobile conversation, when the player says the right thing.
In fact, you can have just about anything else happen when the object is created. The createobject script can be used together with any other scripts, and the event can be chained with all kinds of other events.
MIXING STATIC OBJECTS WITH ABSTRACT OBJECTS
If you want to provide an object the player can take away with her, then often the mechanism is going to start with a command - "buy umbrella" or "pick flower". That means you need a static object to put the command on, and it is often going to have the same name as the abstract object (although it will obviously have a different ID). The static object can be visible or invisible.
An example is found on Earth, where the Candyman hands out free sweets outside the GA HQ. As well as the visible candyman mobile, there is an invisible static object called "sweetie" that has the "get" command on it. When the player types 'GET SWEETIE' this calls an event which creates an object from an abstract template. The abstract object is also called "sweetie".
Here's the attributes for the two objects:
	Name: sweetie
ID: sweetie_st
Type: static
Start: 781
Visible: No
Size: 1
Weight: 1
Desc: The candyman's sweeties are wrapped in red cellophane. They are free (courtesy of the benevolent generosity of the Galactic Administration) so just take one.
Commands:
get - objects.sweets.4
take - objects.sweets.4
	Name: sweetie
ID: sweetie_ab
Type: abstract
Start: 0
Visible: Yes
Size: 1
Weight: 1
Desc: The sweetie is wrapped in crinkly red cellophane, and stamped with the letters "courtesy of the benevolent generosity of the Galactic Administration."
Commands:
drop - objects.sweets.7
eat - objects.sweets.8
unwrap - objects.sweets.8

These two objects have different commands on them so the game can pretty easily figure out which one the player is trying to manipulate.
If they had the same commands then the game would use the one in the player's inventory first.
There is one exception to that rule: if the object in the room has an "examine" command on it which displays the description, and the object in the inventory does not, the command with the event will trump the plain "examine" command so that the description the player sees will be that of the object in the room, not the inventory. This is going to be a pretty rare occurrence, but if you think it might cause a problem, you can get around it by putting an "examine" command on the object in the inventory, too - even if all it does is send a message which would otherwise fit into the object's description. The command on the inventory object will now trump the command on the room object.
VARIATIONS ON CREATING AN OBJECT
The abstract object created does not have to have the same name as the static object with the command on it. In fact, you could vary the object that gets created using a random call. This is what happens with the fireworks which are in a box on Diesel's roof garden.
The static invisible object "firework" has a "get" command on it, but the event that is called when the player types 'GET FIREWORK' doesn't create the object right away. Instead there is a random call which results in any of six different objects being created - rocket, mortar, roman candle and so on. The message that is sent to the player when she picks up a firework tells her which one she has got.
5.2 CHECKING THE PLAYER'S INVENTORY
This lesson teaches you how to check whether a player is carrying an object in her inventory. It builds on the previous lesson, about creating objects from an abstract template.
WHEN TO CHECK THE INVENTORY
There are many reasons to check whether a player is carrying a particular object. You might restrict entry to a location so that only players who carry a specific object can get in, such as only allowing ticket-holders to enter a theatre, or those with invitations to go to a party. The player might need a keycard to open a security door. You might want to have something special happen if a player is carrying a specific item. Or maybe a mobile will react differently to a player who is carrying something the mobile particularly likes, or hates, or fears - marsrat repellant, perhaps?
You can see this event in action in many places in Sol, because most of the role-playing objects have a check to stop you grabbing more than one at a time.
HOW TO CHECK THE INVENTORY
The script to use is checkinventory and it has the following parameters:
· Map Name - the map to which the object belongs: for example, newstar/bodville. Defaults to "home"
· ID/Name - The ID or name of the object
· Found - The event to call if the object is being carried by the player
· Not Found - The event to call if it is not being carried
You can use "home" for the map name if the object you are checking for comes from the same map that the event runs from, otherwise change it to the full system/planetname, iet newstar/bodville.
If you are using the name of the object, you should always type it in lower case, even if the actual name in the object file contains some upper case letters. If the object is an abstract object then you have to use the name.
As with all checking events, you can call an event for one or other, or both, of the possible outcomes - just leave the parameter you don't need blank.
HOW THE SCRIPT WORKS
The code goes through the inventory one item at a time and checks first to see if the object's ID matches that specified in the script, then the object's name. If there is no match it moves onto the next item in the inventory. It stops as soon as it finds a match and runs the specified "found" event. If it gets to the end of the inventory without finding a match, then the "not found" event runs.
If you don't want anything to happen for one of these eventualities then leave the parameter blank.
Here's an example of what the script actually looks like:
checkinventory script: map home: id-name bassoon: found objects.bassoon.2: not-found objects.basoon.3
That's all there is to it!
NAME OR ID?
The script lets you use either the name or the ID of the object you are checking for, and which you use depends on what kind of object it is.
Normally, you will be checking for the presence of an object that was created from an abstract template. When an abstract object is generated by the game, it is assigned a unique ID so it can be distinguished from the other copies of the object in the game. Therefore, you don't know what the ID of the object the player is carrying is, and you have to use the name.
On rare occasions you might have a dynamic object in the game which players have to pick up and take somewhere else. In that case, you will know what the object's ID is, so you can use that in the script. But frankly that's not going to happen very often!
You don't need to worry about the game mixing up the object with one that has the same name but comes from another player's system, because you have specified the map - so the game can tell the difference. You can have objects which are keys or coins even though you know such things exist elsewhere in the Galaxy. However, you can't have several different keys that fit different doors on your planet, unless you give them different names (large key, red key, skeleton key, don key) otherwise all your keys will open all your doors - which is no way to design a security system.
CHECKING FOR OBJECTS FROM OTHER MAPS
Your star system may have more than one planet it in, and a player may end up carrying objects generated from any of those maps. You can check for an object that originates from any of your maps by using the full mapname with the checkinventory script:
checkinventory script: map newstar/bodville: id-name space helmet: not-found objects.helmet.2
This means you could have an object that has uses on more than one of your planets - for example, a keycard might be usable all over the system. Or you could design a puzzle that involves the player getting an object from one planet and using it on another. You could even incorporate an object from a planet owned by another player into your puzzle - you would just need to know the object name and the full map name for the planet it comes from. Cooperate with a friend, and you could come up with a puzzle that ranges over more than one star system.
You can see how this works in Sol, which of course has many planets. If you get a marsrat from the empty shop on Mars, which you can do if you are carrying a piece of cheese purchased from Magdalena and Daughters, and then carry it around with you, you will notice that there are several places on other planets where possession of the marsrat prompts a response: The Urban Spaceman's Bar on Venus, and Earth's mini-zoo, to name but two.
5.3 DESTROYING OBJECTS
This lesson teaches you how to destroy an object, thus removing it from the game. This is a necessary follow-up to creating objects. It explains how to make sure an object is destroyed when the player drops it, and how to make an edible object.
WHY DESTROY OBJECTS
Some objects can be manipulated in ways that would logically result in their destruction - they break when dropped, or wear out with use, or vanish when eaten.
In addition, since you can create as many copies of an object as are needed, you need some way to get rid of them again, to prevent your planet becoming knee-deep (or equivalent) in stuff. While objects left lying around vanish at reset, sometimes you don't want to have to wait for things to get cleaned up.
HOW TO DESTROY AN OBJECT
The script is called destroyobject. It can be used to destroy something in a player's inventory, or in a room, or both. The parameters are:
· Where - inventory, room or both. Defaults to "inventory"
· Map Name - the map the abstract object template comes from. You can usually use "home" for this parameter, otherwise give the map name ie newstar/bodville
· ID/Name - since you don't know the ID, always use the name, and always type it in lower case, even if the actual name in the object file contains some upper case letters
Here's an example of what the script looks like:
destroyobject script: where inventory: map home: id-name sausage
WHAT HAPPENS WHEN YOU DESTROY AN OBJECT
If you tell the game to destroy an object which is in the inventory, it will look in the inventory of the player and examine each object in turn. For each object it will check if the ID matches that specified by the script; if it does not it checks if the object name is a match. If that does not match it will move on to the next object and check that.
If it finds an object that matches then that object will be destroyed, and the event will stop. It will only destroy the first match it finds, so if a player is carrying two copies of the same object, only one will be destroyed.
If there is no match then nothing happens.
Similarly, for objects in a room, the game goes through the list of objects on the map the player is on and for each one checks first the ID and then the name. It stops when it finds a match. The object does not have to be in the same room as the player that triggers the event.
Using "Both"
Sometimes you will want to destroy an object but you won't know whether it is being carried by a player, or whether the player has left it somewhere. In that case, set the "Where" parameter to "both" and the game will search both the inventory and the map, in that order.
Don't forget that an object can be examined if it is on the ground, so if the destruction event is triggered by examining the object, you will need to use "both".
If the Object Isn't Found
If you are not sure where the object is, and therefore you need to use "both", then there is always a possibility that the game won't find the object at all. The player may have given it to another player, or it may have been removed to another map. But even if the destroyobject script cannot find the object, any other script in the event will still be run. If you want a message sent to the player when the object is destroyed, that message will still be sent even if the object is not destroyed. So consider very carefully how you intend to use this script, or you may end up with unintended effects!
In general, if the event that destroys the object is triggered by a command on the object itself, then you can be sure the object is there somewhere! You only have to worry if the event wasn't triggered by something on the object itself. In that case, you could always combine it with a checkinventory to make sure it's there before you try to destroy it...
CONSEQUENCES OF DESTROYING AN OBJECT
When an object is destroyed, nothing else happens. You need to use events to make anything else happen, such as telling the player that the object is no more.
But as with creating objects, you can have just about anything take place when an object is destroyed.
When a destroyobject script is used to delete a copy of an abstract object, that's all it is getting rid of - the copy. It does not delete the original abstract object from the file.
Destroying objects is something you should only do on created objects that came from an abstract template. You should not destroy static objects - if there is a reason to have a static object that is only present some of the time, you can move it in and out of the storeroom at need. You'll learn how to do that in a later lesson.
While you can destroy objects that come from a different map, you should never try to destroy objects from somebody else's system without asking their permission first. This is another of those things that will get you into trouble and risk you losing the ability to put events on your planet.
EDIBLE OBJECTS
Players don't usually have to carry around food items because they are never that far away from a bar where they can top up their stamina, but you may want to provide some rations as part of a puzzle. Here's how to create edible objects.
The Trigger
You need to attach a command to the object that will allow the player to eat or drink it. Let's see... how about... "eat"! Pretty obvious, really.
That trigger will call an event which does all the things necessary when a player eats an object.
What Happens When a Player Eats an Object
Assuming she is not trying to tuck into something poisonous or hazardous, there are three things that happen when a player eats: she gets a stam boost, the object vanishes, and she gets told about it. You know how to use the scripts to make all those things happen.
Normally, eating an object should provide the same amount of stamina as eating a meal in a bar, 5 stamina. Drinking something should give 2 stamina. Use the changeplayer script to add 5 (or 2) to the stamina.
Use message to tell her that she's had a nice meal, and then use destroyobject to, well, destroy the object!
Here's the event for an edible object: the cheese from Magdalena and Daughters on Mars:
start event: #5
Comment: Eat cheese
message script: type single: to whom individual: low objects.cheese.4
changeplayer script: stamina 5
destroyobject script: where inventory: map home: id-name: cheese
end event: #5
5.4 PREVENTING LITTERING
This lesson explains why it's important to put measures in place to stop your objects littering the Galaxy, and what those measures are.
THE PROBLEM WITH MULTIPLE OBJECTS
The fact that objects get created on the fly when they are needed means that they won't ever run out, which is a good thing as far as stopping players getting frustrated goes. But it does mean that you can end up with lots of different copies of an object. If these get left lying about, they can cause a nuisance.
An individual object left here and there isn't necessarily a problem, but big heaps of objects can be. They look ugly, because the game lists each one separately:
You can see a rose, a rose, a rose, a rose, a rose and a rose.
If the lists gets long enough it dominates the player's screen which causes scroll. And if enough objects are dumped in the same place, it could cause the game problems, too!
It's bad enough when your objects get left lying around on your own planet, but when they are taken to another planet and left there, it can be intensely irritating for the owner. So you need to write some events to stop players from littering.
LIMITS ON GETTING OBJECTS
One way to stop littering is to make sure a player can't have more than one copy of an object at a time. To do this, you insert an inventory check into the process that creates the object. If the player is already carrying a flower she cannot pick a second one; if she has bought a top hat she can't buy a second. Most of the role-playing objects in Sol have this limit on them.
With the top hat which can be bought from Tux Deluxe on Mars, here is what the events do:
1) A "buy" command on the object "hat" triggers the events.
2) A checkinventory script looks to see if the player already has a top hat.
3) If she does have a top hat, a message script tells her she can't have another one.
4) If she does not have a top hat, the selling events proceed as normal.
Here's the events used:
Start event: #2
comment: buy hat - tux deluxe - 324 - check if already got hat
checkinventory script: map home: id-name top hat: found objects.hat.3: not-found objects.hat.4
end event: #2
Start event: #3
comment: Already got hat
message script: type single: to whom individual: low objects.hat.2
end event: #3
Start event: #4
comment: Buy hat - check groats
checkmoney script: amount 10: higher objects.hat.5: equals objects.hat.5: lower objects.hat.6
end event: #4
and so on.
Note that this is not foolproof. A player can still end up with more than one of an item because objects can be handed from player to player, so she might be given one as a gift after buying one herself.
DESTROYING DROPPED OBJECTS
The other thing you can do to prevent littering is to make sure that objects don't end up lying on the ground at all - instead, if the player drops them, they are destroyed.
You do this by putting a "drop" command on the object. The event called will override the standard game drop response. Use the destroyobject script along with a message to tell the player what has happened to her precious thing. Use your imagination to come up with reasons why something should vanish when it is dropped: it shatters into a million pieces, it blows away, it rolls underneath something, it's carried off by an alien child...
Objects may still end up on the ground because if the player that triggers the creation of an object has no room in her inventory for the new object, it will be dumped on the ground. If that happens you will just have to clear up by picking them up yourself.
5.5 OBJECTS WITH DIFFERENT USES IN DIFFERENT PLACES
This lesson teaches you how to vary the way an object can be used, depending on where the player is. Scripts can check whether a player is on a given map, in a specific location, or in a type of location.
CHECKING THE PLAYER'S WHEREABOUTS
If a player triggers an event on a location, there is no question where she is - she must be in that location. Similarly, if a location has a static object in it which lets the player type a command to make something happen in that room, then you know that if the event runs the player must be in that location. But if the event is on an object that the player can carry around with her, then when she triggers it she could be anywhere - including on a completely different planet.
If an object is intended for fun or entertainment, such as the role-playing objects in Sol, this doesn't matter. However, sometimes an object is intended to be used in a specific place, so you need a way to find out just where the player is. For example, a piece of alien technology might only work in the presence of the correct alien machine; or using something on your planet might give a special result which doesn't happen when the item is taken off-world.
Actually, you don't ask "where is the player?" Instead you throw out some suggestions as to where she might be, asking "is she on my planet?" or "is she in location 266 on my planet?" and varying the outcome accordingly. Yes, it's another checking script - checkmap. It can be used to check if the player is anywhere on a particular map, or if she's in a specific location on the map. The parameters are:
· Map Name - the name of the map you are checking the player's presence against, ie newstar/bodville. If the object triggering the event comes from that map you can use "home", which is the default
· Location Number - this is optional. If you want to be specific about the location, type in the number. If you just want to check she is anywhere on the map, leave it blank. Don't set it to 0 since there is a location 0 on the map
· Pass - the event to call if the player is in that location, or on that map
· Fail - the event to call if she is not there
Here's what the script looks like when checking she is anywhere on a map:
checkmap script: map newstar/bodville: pass objects.keycard.7: fail objects.keycard.6
And here's the check for a specific location:
checkmap script: map home: location 851: pass objects.sargeur.8: fail objects.sargeur.6
CHECKING THE TYPE OF LOCATION
One further check is to check the type of location the player is in when she does something with an object. The different types of location are determined by the property flags you put on them: exchange, hospital, bar and so on.
You do this with the checklocflag script. The parameters are:
· Flag Name - the flags are: space, link, exchange, shipyard, repair, hospital, peace, bar and custom (this is explained below)
· Flag Set Event - the event to call if the player is in a location that has that property flag on it
· Flag Not Set Event - the event to call if she is not
You can see the effect this has by getting a candle from the Solarium on Mercury. If you light it, this results in a different response in a bar, from anywhere else.
The script looks like this:
checklocflag script: flag bar: set objects.candle.2: unset objects.candle.3
CUSTOM TYPES OF LOCATION
As well as checking for one of the standard types of location - bar, exchange, etc - you can set a custom property on locations and then use the checklocflag script to check for that. This has the effect of setting locations as any kind you like - underwater, up a mountain, swampy, on fire, radioactive, etc.
You do this using a special property called "custom" that the location editor allows you to set. This location property has absolutely no meaning to the game itself, except for when you check for it using checklocflag with the flag name set to "custom".
It means that instead of having an object that only works in a specified location, you could have it only working in a set of locations. Or, conversely, not working! You wouldn't be able to light a candle underwater, for example. More dangerously, if you have a set of locations that are filled with a flammable gas, it would be extremely foolish for the player to light the candle in one of those rooms.
In both these examples, the "light" command on the "candle" object calls an event which checks if the player is in a location with one of the special properties. If she is not, then the standard events to light the candle are called; if she is, however, the candle won't light... or there is a massive explosion!
USING OBJECTS IN OTHER STAR SYSTEMS
Bear in mind that a player can carry objects to other planets – and those planets may be in other systems. Any events that run in certain types of location will also run on other planets in the specified location type.
That may not be a problem if they are designed to do something in a bar or an exchange, but it can lead to some very odd effects in locations with the "custom" property, because there's no way to distinguish between your custom areas and custom areas on another planet.
If you have used the custom property to designate some underwater locations, but another PO has set up a planet where custom means quiet rooms where you shouldn't make any noise, then your object events could look very odd indeed.
There are two ways to avoid this problem. One is to stop the player from taking the object off your planet, by destroying it when she returns to the landing pad. Or have a customs post next to the interstellar link to confiscate items that shouldn't leave your star system.
The other way is to add in a checkmap script before running the event that is supposed to happen in custom locations, and only run it if the player is on your planet.
5.6 MOVING OBJECTS
This lesson explains how to move an object from one location on the map to another, and how to move an object from a player's inventory to the ground, and vice versa.
WHY MOVE AN OBJECT?
A static object doesn't normally move, as the name suggests. At least, the player cannot pick it up and carry it off. But there are a number of reasons why you might want to shift a static object around the map. For example, a player might kick or push something which moves it into the adjacent room. In a puzzle, an object might only appear when the conditions are right, or it might move around the map so that the player has to hunt it down. You can even make a mobile move around the map using events, simulating the effects that are not implemented in the game yet.
An example of a static object which moves is the police box on Earth, which hops between a number of different locations so it can appear and disappear before your very eyes.
You can also move objects that you defined as dynamic around the map. However, since you need to know the object ID in order to move them, you cannot move ones that have been created from an abstract template.
USING THE STOREROOM
A static object always has to be somewhere on the map. Even if, to the player's perception, it has softly and silently vanished away, it is still there, somewhere. That's where the storeroom comes in. Location 0 on your map should have been set up as a storeroom, and it should be inaccessible to players. That storeroom is where objects go when they need to be moved out of reach of players.
HOW TO MOVE AN OBJECT
The script is move which you have already used to move players around the map. This time, you use it to move an object. So the first parameter you need to change is the "What to Move" parameter - set it to "Object". This will make some extra parameters appear, as well as the ones that also apply to moving players. The full parameters for moving an object are:
· Location Number - the location you want to move the object to.
· ID or Name - use the object ID
· Silent Move? (y/n) - defaults to n. This is explained below
The script looks like this:
move script: what object: id/name policed box: to location 1041
ABOUT SILENT MOVES
Normally when an object moves into a location where a player is, she is told that the object has just appeared:
A police box has appeared.
Similarly, anyone in a room when an object disappears is told about it. However, if you set the move script as a silent move, those messages will not be sent. You could replace the messages with your own, using an announce script on the relevant locations, or not tell the players that the object has shown up/gone away. However, anybody who is using FedTerm will see the object appear and vanish from the Location box - there's no way to stop that from happening.
The script defaults to not being silent. To make the move silent, type a "y" into the silent move box. In that case, the script looks like this:
move script: what object: silent yes: id/name olice box: to location 1041
If you change your mind and want the move to stop being silent, change the "y" to "n" - or just delete it completely so the parameter box is left blank.
GETTING AND DROPPING OBJECTS
As you should know by now, putting a command on an object which is the same as a game command will override the standard response the game usually takes, so that nothing will happen except what your event specifies. Therefore, if you put a "get" or "drop" command on an object, the player won't actually be able to pick it up or put it down, unless you write the event to do that. For that, you use two scripts: get and drop. You can see examples of both these scripts with the sonic wrench, an object found in the workshop on the Moon.
Using Get
The script does exactly what it sounds like - it moves an object from the location into the player's inventory. It has the following parameters:
· ID or Name - you can use either because this script works just fine with abstract objects
· Silent Get? - defaults to n
If you don't change the script to silent, the player gets a message:
You have picked up the sonic wrench.
And so do others in the room. To suppress the messages, use the dropdown box to select "yes".
The two versions of the script looks like this:
get script: id-name pencil
get script: id-name bottle: silent yes
Using Drop
This script moves the object from the player's inventory to the floor of the room the player is in. The parameters are:
· ID or Name - you can use either because this script works just fine with abstract objects
· Silent Drop? - defaults to n
If you don't change the script to silent, the player gets a message:
You have dropped the sonic wrench.
And so do others in the room. To suppress the messages, use the dropdown box to select "yes".
The two versions of the script looks like this:
drop script: id-name pencil
drop script: id-name bottle: silent yes
MOVING DYNAMIC OBJECTS
You won't use dynamic objects all that often, but if you do then you might want to move them around the map, too. The move script will work for them so long as they are on the ground; however, you can't move an object to another location if it is in a player's inventory. You will therefore need to shift the object out of the inventory first by moving it to the floor using drop and then you can move it.
This happens with the sonic wrench on the moon; if the player tries to leave the workshop still carrying the wrench, it is taken away and put back in its starting place.
Here is the complete set of sonic wrench events:
Start event: #1
Comment: Get sonic wrench
get script: id-name obj_wrench
message script: type single: to whom individual: low objects.wrench.1
End event: #1
Start event: #2
Comment: Drop sonic wrench
drop script: id-name obj_wrench
message script: type single: to whom individual: low objects.wrench.2
message script: type single: to whom room_ex: low objects.wrench.3
End event: #2
Start event: #3
Comment: After delay, a droid moves the wrench
message script: type single: to whom room: low objects.wrench.4
move script: what object: silent yes: id/name obj_wrench: to location 539
End event: #3
Start event: #4
Comment: Enter event on loc 794 - workshop - check for laser, if they have it, take it away
checkinventory script: map home: id/name obj_wrench: not-found stop
message script: type single: to whom individual: low objects.wrench.5
drop script: id-name obj_wrench: silent yes
move script: what object: silent yes: id/name obj_wrench: to location 539
End event: #4
Start event: #5
Comment: Use wrench
message script: type single: to whom individual: low objects.wrench.6
End event: #5
And here are the messages that go with the events:
<section name wrench'>
<para number='1' comment='Get sonic wrench'>
It is much heavier than it looks!
</para>
<para number='2' comment='Drop sonic wrench'>
The wrench lands on your foot, and the sonic gripping operation starts to squeeze your toes (or equivalent) in a painful fashion. With a shout, you kick the wrench away across the room, where it lands with a noisy clatter.
</para>
<para number='3' comment='Roomex'>
With a shout, %s kicks the wrench across the room - it must have landed on a foot or equivalent body part - where it lands with a loud clatter.
</para>
<para number='4' comment='Wrench is returned - room msg'>
A moment later, a small droid skitters across the room and retrieves the wrench, presumably to return it to the place it belongs.
</para>
<para number='5' comment='Take wrench away when leaving'>
As you step out of the workshop, a small droid skitters up and tells you that it is forbidden to remove tools from the room unless you have authorization. It demands that you return the sonic wrench, and won't let you leave until you do. You shrug and hand it over - you didn't really want it, anyway!
</para>
<para number='6' comment='Use wrench'>
That is not possible, for a number of reasons: 1) there is nothing here that needs to be tightened or loosened; 2) you do not know how to operate the wrench; and 3) you are not a trained and licensed operator, so using this equipment would be against the health and safety regulations.
</para>
</section>
5.7 THE SIZING OF OBJECTS
This lesson explains how you can use the size of an object to create things that have a specified number of uses and will run out and need to be refilled, or will wear out and vanish. It also explains how to have an object with different states.
WHAT DOES OBJECT SIZE MEAN?
The size of an object means exactly what you want it to mean. It's a completely arbitrary value that is never used by the game itself, except when you use events to do something with the size.
There are three things you can do with an object size: display it, check it and change it. You can do these things to both abstract/dynamic objects and to static objects, although the static object has to be in the same room as the player that triggers the events.
WHAT YOU COULD USE AN OBJECT'S SIZE FOR
Fed is not a traditional role-playing game where the player amasses a lot of equipment such as a bow which needs a quiver full of arrows, a gun with a set number of bullets, a potion with so many doses, or a med-kit with a certain number of uses. But if you want to have that kind of object, you can - the object's size can be a way to keep track of how often something has been used.
There are two examples of this in the game, one of which vanishes when it is empty, and one which remains and can be recharged. They are the carton of fermented llama milk from Brass, and the holo-card from the Temple of Gaelaan on the Moon.
You can see yet another use of the object size by going to the Solarium on Mercury, where there is a box that can be opened and closed. The state of the object - whether it is open or closed - is tracked using its size.
Before continuing with this lesson, go and play with these objects to see what happens.
DISPLAYING AN OBJECT'S SIZE
If you want an object which runs out after a limited number of uses, you need a way to tell the player what the current size of the object is. After all, you wouldn't want her to go to a party with a carton of fermented llama milk that was almost empty!
You do this by using the displaysize script. It has two parameters:
· ID or Name - the script can use either
· Text to Use - the text you want to send the player, which tells her the size of the object
Since the whole point of this is that the size will vary, you need to include something in that bit of text to make the game insert the current size. You do this with a special code: %d. Wherever this is in your text, the game will replace it with the current size. So here's what the script looks like:
displaysize script: id-name milk: text 'The carton contains %d drinks of fermented llama milk, the favorite beverage on Brass.'
When the player sees this, she sess the actual size of the object, like this:
The carton contains 3 drinks of fermented llama milk, the favorite beverage on Brass.
Triggering the Size Display
Normally, you would want the information about an object's size to show up when the player examines it, so you put the event containing the displaysize script on an "examine" command to override the usual description. (Don't forget to include an "ex" command as well.) You could have the text in the displaysize script make up the whole description, or combine it with a message script.
Or, you could have the size show up when the player does something other than just look at the object. The event could, for example, go on a "check" command.
A Problem With Grammar
There is one problem with the displaysize script, which can show up when the object's size reduces to 1. In the example of the llama milk, that would result in the following:
The carton contains 1 drinks of fermented llama milk, the favorite beverage on Brass.
Not very grammatical at all! You could word your text in such a way that it doesn't matter:
The number of drinks of fermented llama milk remaining in the carton is: 1
Or if you think that is just too stilted, you could have two bits of text, one for when the object's size is 1, and the other for when it's more than 1. If you check the object's size before displaying the text, you can select the correct one. You'll learn how to do that later in the lesson.
CHANGING AN OBJECT'S SIZE
When an abstract object is created, its size is whatever you defined the object size as. A dynamic or static object will start with the defined size when the game fires up, resetting to that size every time there's a reset. If you want an object that runs out after so many uses, you need a way to make its size decrease. You do this using the changesize script. This can increase or decrease the size, and just like the way you change a player's stats, you can change the size by the number you specify, or set the size to a specific value. The parameters are:
· ID or Name - it will work with either
· Change by - the value you want to change the size by, or to
· How to change - defaults to "Add to size", can be changed to "Set to size". This is explained below.
The script looks like this:
changesize script: id-name milk: amount -1: change using add
Adding or Setting the Size
You should understand the difference between "add" and "set" from the lesson about the changestat script, but just to refresh your memory...
Adding a value to the size will increase it by the value you specify. For example, if the size is 5, and the script changing the size uses the value 2, then when the game runs the script the change value is added to the current value to give a size of 7. If the value is a negative number, then the size will decrease: a value of -2 will leave the size at 3.
Setting a value means that no matter what the object's current size is, when the script runs it is going to be changed to the value you specify. If the size is to be changed with set rather than add, and the value is 2, then as a result the size will be changed to 2, no matter how big it was before. For this reason, you cannot use negative numbers when setting a size.
The script defaults to "add". If you change it to "set, the script looks like this:
changesize script: id-name holo-card: amount 3: change using set
CHECKING AN OBJECT'S SIZE
In order to have an object where the size diminishes with each use until it vanishes, you need to be able to check the size of the object, which you do with the checksize script. The parameters are:
· ID or Name - either will work
· Value to Check - the object size that you want to check against
· Higher - the event to call if the size is greater than the value specified
· Equals - the event to call if it's the same
· Lower - the event to call if it's smaller
The script looks like this:
checksize script: id-name holo-card: value 1: higher objects.holocard.5: equals objects.holocard.5: less object.holocard.6
Whether your object vanishes when it becomes empty (like the milk carton) or stays in the inventory so it can be recharged (like the holo-card), you need to use the checksize script to determine its size. In the case of the holo-card, if the size is greater than 1 or equal to 1, it will work; if it's less than 1, it won't work and needs to be recharged.
With the llama milk, the check when the player examines the milk looks like this:
checksize script: id-name milk: value 1: higher food.milk.8: equals o food.milk.9
If the size is greater than 1, it displays one message, and if it's equal to 1 it displays a different one. The size can never be less than 1 because the carton vanishes when empty. You can see the complete set of events for the milk and the holo-card at the end of this lesson.
USING OBJECT SIZE TO DETERMINE AN OBJECT'S STATE
As well as using the object size with things in the player's inventory, you can use the size scripts with a static object in a room. This means that a player can do something to change the state of an object, and this can affect what other players see or can do.
An example is the box you find in the Solarium on Mercury. It can be open or closed. Examining the box tells you which it is. If it is open, you can close it; if it is closed, you can open it. You can also get a candle so long as the box is open. All of the things you can do with the box have different results depending on whether the box is open or closed:
· Examining the box gives a different description for each state.
· If the box is already open, opening it doesn't work.
· If the box is already closed, closing it doesn't work.
· If the box is closed, the player can't get at what is inside it.
With these events, the object is defined with a starting size of 1, which means it is closed. When the box is opened, the size is changed to 2, which means it is open. In fact, you could use any values for the open/closed size, because they are transparent to the player. The only thing you can't do is define an object that starts with the size set to 0 - the object editor won't let you, and will set the size back to 1.
Here is the complete set of events for the box:
Start event: #1
Comment: Examine box - check if it is open or closed
checksize script: id-name obj_box: value 2: equals objects.box.2: less objects.box.3
End event: #1
Start event: #2
Comment: Box is open
message script: type single: to whom individual: low objects.box.1
End event: #2
Start event: #3
Comment: Box is closed
message script: type single: to whom individual: low objects.box.2
End event: #3
Start event: #4
Comment: Get box
message script: type single: to whom individual: low objects.box.3
End event: #4
Start event: #5
Comment: Open box - check if it's open or closed
checksize script: id-name obj_box: value 2: equals objects.box.6: less objects.box.7
End event: #5
Start event: #6
Comment: Box is already open
message script: type single: to whom individual: low objects.box.4
End event: #6
Start event: #7
Comment: Box is closed, so open it
message script: type single: to whom individual: low objects.box.5
message script: type single: to whom room_ex: low objects.box.6
changesize script: id-name obj_box: amount 2: change using set
End event: #7
Start event: #8
Comment: Close box - check if it's open or closed
checksize script: id-name obj_box: value 2: equals objects.box.9: less objects.box.10
End event: #8
Start event: #9
Comment: Box is open - so close it
message script: type single: to whom individual: low objects.box.7
message script: type single: to whom room_ex: low objects.box.8
changesize script: id-name obj_box: amount 1: change using set
End event: #9
Start event: #10
Comment: Box is already closed
message script: type single: to whom individual: low objects.box.9
End event: #10
Start event: #11
Comment: Get candle - check if box is open
checksize script: id-name obj_box: value 2: equals objects.box.13: less objects.box.12
End event: #11
Start event: #12
Comment: Box is closed - can't have a candle
message script: type single: to whom individual: low objects.box.10
End event: #12
Start event: #13
Comment: Box is open - check if she already has a candle
checkinventory script: map home: id/name candle: found objects.box.14: not-found objects.box.15
End event: #13
Start event: #14
Comment: Already got one
message script: type single: to whom individual: low objects.box.11
End event: #14
Start event: #15
Comment: Not got one - so give her one
message script: type single: to whom individual: low objects.box.12
message script: type single: to whom room_ex: low objects.box.13
createobject script: where inventory: home-map home: id obj_candle
End event: #15
Start event: #16
Comment: Examine candles - check if box is open or closed
checksize script: id-name obj_box: value 2: equals objects.box.17: less objects.box.18
End event: #16
Start event: #17
Comment: Desc of candles if box is open
message script: type single: to whom individual: low objects.box.14
End event: #17
Start event: #18
Comment: Desc of candles if box is closed
message script: type single: to whom individual: low objects.box.15
End event: #18
And here are the messages:
<section name box'>
<para number='1' comment='Ex box - it s open'>
The box is made out of wood that has a blue tinge to it and a grain that forms swirling patterns that look like weird alien faces. The box is open, and is filled with candles.
</para>
<para number='2' comment='Ex box - it s closed'>
The box is made out of wood that has a blue tinge to it and a grain that forms swirling patterns that look like weird alien faces. The box is closed.
</para>
<para number='3' comment='Get/take box'>
You pick up the box, but before you can make off with it one of the Solarium's attendants gives you a piercing stare and clears her throat in a meaningful way, so you put it back down again.
</para>
<para number='4' comment='Open box - it s already open'>
The box is already open!
</para>
<para number='5' comment='Open the box'>
You release the magnetic clasp and open the box, which turns out to be full of candles.
</para>
<para number='6' comment='roomex'>
%s has opened the box, which turns out to be full of candles.
</para>
<para number='7' comment='Close box'>
You close the box and the lid fastens with a snap of the magnetic clasp.
</para>
<para number='8' comment='roomex'>
You hear a snapping noise - %s has closed the box.
</para>
<para number='9' comment='Already closed'>
The box is already closed!
</para>
<para number='10' comment='Get candle - box is closed'>
I can't find anything called candle in the vicinity!
</para>
<para number='11' comment='Box is open but already got one'>
You already have a candle - why don't you use that one before you grab another one?
</para>
<para number='12' comment='Give the girl a candle'>
You take a candle out of the box.
</para>
<para number='13' comment='roomex'>
%s has taken one of the candles out of the box.
</para>
<para number='14' comment='Desc of candles if box is open.'>
The box is full of spherical, rainbow-colored candles.
</para>
<para number='15' comment='Desc of candles if box closed'>
I can't find anything called candle in the vicinity!
</para>
</section>
THE LLAMA MILK EVENTS
Here are the events for the carton of llama milk:
Start event: #1
Comment: Buy milk - object in loc 456 - check funds
End event: #1
Start event: #2
Comment: Sell the milk
message script: type multi: to whom individual: low food.milk.1 to high food.milk.2
End event: #2
Start event: #3
Comment: No funds for milk
message script: type single: to whom individual: low food.milk.3
End event: #3
Start event: #4
Comment: Buy carton of milk - check funds
End event: #4
Start event: #5
Comment: Sell carton of milk
message script: type single: to whom individual: low food.milk.4
createobject script: where inventory: home-map home: id obj_milk
End event: #5
Start event: #6
Comment: No funds for carton
message script: type single: to whom individual: low food.milk.5
End event: #6
Start event: #7
Comment: Examine milk - check how many drinks left
checksize script: id-name milk: value 1: higher food.milk.8: equals food.milk.9
End event: #7
Start event: #8
Comment: Milk desc - more than 1 drink
displaysize script: id-name milk: text 'The carton contains %d drinks of fermented llama milk, the favorite beverage on Brass.'
End event: #8
Start event: #9
Comment: Milk desc - 1 drink left
displaysize script: id-name milk: text 'The carton contains %d drink of fermented llama milk, the favorite beverage on Brass.'
End event: #9
Start event: #10
Comment: Check how many drinks are left in carton
checksize script: id-name milk: value 1: higher food.milk.11: equals food.milk.12
End event: #10
Start event: #11
Comment: Drink milk - more than 1 drink left
message script: type single: to whom individual: low food.milk.6
changesize script: id-name milk: amount -1: change using add
End event: #11
Start event: #12
Comment: Drink milk - last drink
message script: type multi: to whom individual: low food.milk.7 to high food.milk.8
destroyobject script: where inventory: map home: id/name milk
End event: #12
Start event: #13
Comment: Drop milk
message script: type single: to whom individual: low food.milk.9
message script: type single: to whom room_ex: low food.milk.10
destroyobject script: where inventory: map home: id/name milk
End event: #13
And here are the messages:
<para number='4' comment='Buy carton of milk'>
The elderly serving woman hands you a carton of milk to take away.
</para>
<para number='5' comment='No funds for carton'>
You are about to ask the aged crone who is serving here to sell you a carton of milk to take away, when you realize that you don't have enough groats. A temporary embarassment, surely!
</para>
<para number='6' comment='Drink milk'>
You take a swig of the milk, and then gasp as you attempt to swallow. Your vision dims and for a moment you think your head is about to explode. You feel a burning sensation running down your body, as the milk makes its way to your stomach... and then finally a warm feeling which spreads throughout your body and leaves you with a great sense of well-being. By the time you have swallowed a whole portion of the milk, you feel wonderful!
</para>
<para number='7' comment='Drink milk - last serving'>
You take a swig of the milk, and then gasp as you attempt to swallow. Your vision dims and for a moment you think your head is about to explode. You feel a burning sensation running down your body, as the milk makes its way to your stomach... and then finally a warm feeling which spreads throughout your body and leaves you with a great sense of well-being. By the time you have swallowed a whole portion of the milk, you feel wonderful!
</para>
<para number='8'>
The carton is now empty, and it self-destructs, thus leaving no litter behind.
</para>
<para number='9' comment='Drop milk'>
You drop the carton of milk. It bursts as it hits the ground, and milk splashes everywhere, making a horrible mess. Anyone in the vicinity gets splattered. Fortunately, a robo-cleaner shows up to deal with it, much to its annoyance.
</para>
<para number='10' comment='roomex'>
Suddenly, %s drops a carton of fermented llama milk, which bursts as it hits the floor, splashing milk everywhere - including over you. Fortunately, a robo-cleaner shows up and deals with the horrible mess, much to its annoyance, leaving you unsoiled.
</para>
THE HOLO-CARD EVENTS
Here are the events for the rechargeable holo-card:
Start event: #1
Comment: Get holo-card - check if already got one
checkinventory script: map home: id/name holo-card: found objects.holocard.2: not-found objects.holocard.3
End event: #1
Start event: #2
Comment: Already got one
message script: type single: to whom individual: low objects.holocard.1
End event: #2
Start event: #3
Comment: Not got one - so give her one
message script: type single: to whom individual: low objects.holocard.2
message script: type single: to whom room_ex: low objects.holocard.3
createobject script: where inventory: home-map home: id obj_holocard
End event: #3
Start event: #4
Comment: Squeeze holo-card - check if it has power
checksize script: id-name holo-card: value 1: higher objects.holocard.5: equals objects.holocard.5: less objects.holocard.6
End event: #4
Start event: #5
Comment: Got power, so display holo
message script: type single: to whom individual: low objects.holocard.4
message script: type single: to whom room_ex: low objects.holocard.5
changesize script: id-name holo-card: amount -1: change using add
End event: #5
Start event: #6
Comment: No power
message script: type single: to whom individual: low objects.holocard.6
End event: #6
Start event: #7
Comment: Recharge holo-card - check she is in right place
checkmap script: map-name home: location 348: pass objects.holocard.8: fail objects.holocard.9
End event: #7
Start event: #8
Comment: Recharge the card
message script: type single: to whom individual: low objects.holocard.7
message script: type single: to whom room_ex: low objects.holocard.8
changesize script: id-name holo-card: amount 3: change using set
End event: #8
Start event: #9
Comment: Not in right place
message script: type single: to whom individual: low objects.holocard.9
End event: #9
Start event: #10
Comment: Drop holo-card
message script: type single: to whom individual: low objects.holocard.10
message script: type single: to whom room_ex: low objects.holocard.11
destroyobject script: where inventory: map home: id/name holo-card
End event: #10
And here are the messages:
<section name holocard'>
<para number='1' comment='Get holo-card - already got one'>
Possession of more than one holo-card is considered a sin by the members of the temple, since it is against the principles which proclaim that the Martians' gifts should be shared equally.
</para>
<para number='2' comment='Give her a card'>
You pick up one of the holo-cards. Treat it carefully, because it is a holy item for cult members.
</para>
<para number='3' comment='roomex'>
%s has picked up one of the holo-cards.
</para>
<para number='4' comment='Squeeze holo-card'>
You squeeze the holo-card. It lights up and a 3D image appears to float in the air above it. It shows a scene from the life of Gaelaan, the famous moment when he receives his revelation. He is gazing upwards, and his face reflects awe, shot through with surprise and even a tinge of regret. After a few moments, the image fades away.
</para>
<para number='5' comment='roomex'>
A 3D image appears, produced by a holo-card that %s is holding. It shows a scene from the life of Gaelaan, the famous moment when he receives his revelation. He is gazing upwards, and his face reflects awe, shot through with surprise and even a tinge of regret. After a few moments, the image fades away.
</para>
<para number='6' comment='Out of juice'>
Nothing happens when you squeeze the holo-card; it has run out of power. You will have to get it recharged at the temple from which you got it.
</para>
<para number='7' comment='Recharge holocard'>
You hold the holo-card against the panel on the recharger. A light on the unit glows red for a moment, then turns green, indicating that the card is now fully powered up.
</para>
<para number='8' comment='Roomex'>
The light on the recharger changes to red as %s holds a holo-card against it, then it turns green again to show that the card is now fully powered up.
</para>
<para number='9' comment='Wrong place to recharge'>
There is nothing here that will recharge the holo-card. You will need to take it back to the temple from whence it came.
</para>
<para number='10' comment='Drop holocard'>
You let the card fall to the ground, and it breaks into pieces with a crunching sound. Oh dear. Better hope no members of the cult saw you; they would be furious at the destruction of a holy icon.
</para>
<para number='11' comment='roomex'>
There is a crunching sound. %s has dropped a holo-card to the ground, and it has broken into pieces.
</para>
</section>
PART 6 - PUZZLES AND ADVANCED TECHNIQUES
6.1 AN INTRODUCTION TO PUZZLES
This lesson explains how puzzles work in Fed2 and gives you some tips about how to put one together.
All of the events used as examples so far in these lessons have been small, discrete sets of events that do a small number of things - whether functional, such as moving the player around the map, or fun, such as objects that can be manipulated for entertainment. Now we can consider how to come up with a much larger set of events where all the small bits fit together to form a puzzle. The lessons in this section of the manual will explain how you go about putting a puzzle together, and teach you some of the advanced scripts that you can use in puzzles.
A GRIM WARNING
If you want to write a puzzle for your planet, you need to be familiar with how events work. You must have read through all the lessons in this manual, written some events and had them put into the game.
You cannot just turn straight to this part of the manual and get stuck into writing a puzzle, without doing the necessary background work.
Don't try to run before you can walk (or glide, or roll, or slither).
WHAT IS A PUZZLE?
A puzzle is a task the player has to complete in order to gain a goal. It's a quest, a mission, an adventure the player can undertake for fun. A puzzle usually consists of a series of obstacles the player has to overcome. Some of these will be physical, such as finding a secret entrance or finding the key to a locked door, and some will be mental, such as persuading or tricking a guard into letting her past or obtaining some important clue. The goal of the puzzle could be a concrete thing to find, such as an item of treasure; an action to complete, such as destroying the lair of a supervillain; or some information to collect.
THE PUZZLE OUTLINE
Before you sit down at your computer to write the events for your puzzle, you need to know what the story for the puzzle is. What is the goal? What obstacles are there on the way? How does the player get started on the puzzle? Unless you know the answers to these questions, you won't be able to write the events.
What you need to do is to produce an outline.
An outline is the story of your puzzle, describing the steps the player goes through as she tries to solve it. In the movies, the equivalent is the storyboard. How much detail goes into your outline is up to you. It can be quite sketchy, with just the main points, or it can go into great detail. People vary in the way they like to work - some plan everything out meticulously in advance, others make it all up as they go along.
Whether you choose one of those two extremes or fall somewhere in the middle, remember that the outline is not set in stone. As you actually write your events, you may change your mind about how you want the puzzle to work, or realize there's something you forgot to take into account and need to add in. That's fine - the outline is there as a guide, not a straightjacket.
A Simple Outline
At its simplest, the outline could just list the components of the puzzle:
The player needs to retrieve the tungsten toothpick from the vault in the lair under the volcano. To do this, she will need to avoid the guards, get across the river without the piranhas eating her, defeat the guard dog, open the vault using the right combination, and take the toothpick without setting off the alarm. She then needs to escape the lair and return the toothpick to its rightful owner.
A Medium Outline
An outline which contains a bit more detail may list the steps in the puzzle, with the solutions to each obstacle:
The player is asked by an elderly dentist to retrieve the tungsten toothpick which has been stolen from him by the evil Dr Decay. The villain has concealed it in a vault in his lair under a volcano on a remote island.
· First the player must find the island. She will need a map which she can buy from The Cartographer, a seedy underworld figure. If she tries to sail to the island without the map, she will never get there.
· She needs to obtain a boat, by bribing Captain Haddock to sail her there, in return for a box of his favorite fish-flavored chocolates. She can buy these from the market.
· When the Captain puts her ashore on the island she must explore. The entrance to the lair under the volcano is guarded - it's a bridge over a river filled with piranhas. If she tries to go over the bridge, the guards will kill her. If she is careless when exploring, she will be caught and killed.
· If she tries to swim the river, the piranhas will eat her. She needs to find another way across. The answer is to swing across the river on vines which very conveniently hang down from trees. However, if she tries to do this using just one vine, it will break and she will die. Instead she must plait three vines together into a sturdy rope.
· Once across the river she can sneak behind the guards into the lair. She must explore and she will discover the area with the vault is guarded by a dog. If she tries to go past it, it will savage her to death. She must feed it a steak laced with tranquilizer to put it to sleep. She'll need to go back to the mainland to get both these things: the steak from the carvery and the tranks from the dispensary. If she tries to bribe the dog with steak without tranks, it just gives the dog a taste for flesh and she dies.
· Once past the dog, the player must open the vault door by typing in the correct code...
And so on.
The Fully Detailed Outline
Right at the other end is the outline containing all of the details of the puzzle. This goes as far as describing what scripts will be used, and includes the text of all the messages to be sent:
Start of puzzle
When player walks into the surgery, check where she has got to in the puzzle:
not started - msg: "Hello, my dear. Are you here to help me with my little problem? Oh good. You see, the evil Dr Decay has stolen from me something very precious - my tungsten toothpick. It was given to me as a prize for my outstanding dentistry. Will you help me?"

player says yes - msg: "He's taken it to his lair..." etc

player says no - msg: "Oh dear, I will have to find someone else to help. Still, while you are here, perhaps I can interest you in a filling or two..."
started puzzle - msg: "How are you getting along? Do you need any more information?"
got toothpick - msg: "Oh, you've got it! How wonderful..."
completed puzzle - msg: "You again? The tungsten toothpick is here, quite safe. I suppose you want me to give your teeth a checkup..."
Mobile talk for dentist
island - The dentist looks worried. "Yes, you will need to go to Dr Decay's lair on the island. It's a very dangerous place. You'll need a boat to get there."
boat - "Try the docks," suggests the dentist.
map - "Oh of course, you will need a map to find your way to the island, but of course Dr Decay keeps its whereabouts secret. You'll have to find a dodgy dealer of some kind."
And so on!
Personally, I go for the "meticulous planning" method, spending far more time on the outline than on writing the actual events. But it's your choice.
PUZZLE REWARDS
Traditonally, a player should receive a reward when she solves a puzzle, but with the limits on the events that affect a player's stats, there's not a huge amount you can do with events. You are limited to 1,000 groats per day, you can't touch the player's max stats, nor can you give her any hauling credits or whatever other credits she needs for her rank.
If you want to reward players who solve your puzzle, you will have to do it manually. You will need to include some text at the end of your puzzle which tells the player to TB you or gives your email address and asks the player to send a capture of the text to you as proof. Then you can reward her: give a slithy to the first person to solve it, or give trading benefits or factory space to anybody who succeeds.
You could also include a location which is a memorial of some kind, listing the names of all those who solve your puzzle. Add names to it using the 'CHANGE DESC' command - and don't forget to 'SAVE MAP' afterwards.
OPTIONAL EXTRAS
Writing a puzzle is complicated and time-consuming, but it can be worth devoting a little bit of time to adding things that are not absolutely key to the puzzle. Yes, it increases your workload, but it can make the puzzle more interesting and fun, and make your planet a richer place.
For example, if you have a talking mobile which gives a piece of vital puzzle information to the player, give it some trivial chat as well - write the dialog to cover the usual topics of converation: who, what, where, etc.
If an object has to be used in a certain place, in a certain way, put some other commands on it to do things that are fun but not important. If you give the steak to Captain Haddock, he eats it but tells you he prefers fish. If you give it to him once it's laced with tranks, he falls overboard.
Look for ways to include red herrings - objects that are not needed for the puzzle or mobiles that have no useful information whatsoever. That way, the player cannot just assume that every object or mobile she comes upon is important. If you include an object which actually hinders the player from completing the puzzle, she won't be able to just pick up everything she finds without thought; she will need to consider carefully whether she wants to carry something around with her in case it becomes useful later.
BREAK THE EVENTS DOWN
A puzzle can be long, with lots of events, and if you sit down and try to write the whole thing in one go you will find it a monumental task. It is much better to split the puzzle up into chunks and write the events for one part, get the files put into the game, test that the events work, fix any problems, and then move onto the next part. Do it one piece at a time.
Make good use of categories and sections to split the puzzle events up into small chunks. You'll find it easier to keep track of which events do what.
You will need to stop other players from being able to do the half-puzzle before you are ready to throw the whole thing open to the public. If your puzzle area is kept separate, you can block off the access point. Use a checkforowner script and turn back absolutely everyone who isn't you, or use a command on an invisible object to provide you with your own private method of getting to the puzzle area - that way you can ask a friend to help you test the puzzle.
6.2 PROBLEMS AND PITFALLS OF FED PUZZLES
This lesson will cover some of the problems you will encounter when coming up with the story for your puzzle. It will also tell you how to avoid the pitfalls, and what alternatives there are.
SINGLE-PERSON PUZZLES IN A MULTI-PLAYER GAME
Multi-player games are often called "persistent world" puzzles because the world keeps on rolling even when you are logged off. In Fed, the economy of the game is persistent - what one player does affects the game, which then affects other players. The state of each planet's economy is saved at reset and continues where it left off when the game fires up again. But the environment is not persistent: the daily reset puts objects back to start positions, cleans up litter and so on.
You need to design your puzzle so that whatever one player does, it won't affect other players. Things to avoid:
· A puzzle that only one person can attempt at a time.
· A puzzle that can only be solved once a day.
· A puzzle where a malicious person can grab a vital object to stop anyone else from doing the puzzle.
Most of these things can be avoided with the careful use of abstract objects, to ensure there are always enough objects for everyone.
Although it is not logical that one player could be trying to get past the dog while another is trying to open the vault and a third is on the way back to give the toothpick back to the dentist, that's the way it has to work. For each player, the puzzle must appear to be a single-person puzzle for her and only her.
LOCKS AND KEYS
In a single-player game, locked doors are easy to understand, and they make up a vast number of the obstacles a player has to overcome to solve a puzzle. A door can only be opened with a specific key, which is hidden somewhere. The player has to find the key, then she can unlock the door and go through it.
But Fed DataSpace is a multi-player world with lots of other players running around in it. A door where one key is needed means only one person can unlock it. And then what happens? Either the door stays open, so that anybody can go through it without having to find the key first, or it slams shut and locks, so no-one else can ever go through it because the first player has still got the key.
You can get around this by having an endless supply of keys, so that everyone can get through the locked door. Sometimes you will have no choice but to use an illogical solution like this. But there are ways to make it slightly less absurd, using alternatives to the classic "locked door that needs key". Here's a few ideas:
· Lockpicks - these are a staple of dungeons and dragons style games, but you could come up with a more high-tech solution such as an electronic lockpick, a sonic screwdriver, or a magnetic manipulator.
· Keycard - a computer will print out a keycard if you give the right command to hack into it, or a receptionist will give you a keycard if you bribe her or fool her into thinking your request is legitimate.
· Guard - the door is guarded by a mobile, and the player has to bribe/trick/kill it in order to get in.
· Password access - the door has a security pad on which the player has to type the access code, or the player has to give the right password to a mobile, or she has to knock three times and ask for Gorx.
· Hidden access - the door has a secret switch or lever which the player has to search for, or the door itself is concealed and will only show up with a search.
· Lateral thinking - if the player can't unlock the door, she could find an axe and chop her way through, or climb in through a window instead
There's lots of other ways to restrict access so that you don't have the problem that keys provide.
DON'T LOCK PLAYERS IN
Speaking of locked doors, your puzzle should never lock the player in somewhere so she has to figure out how to get to get out. The puzzle should make it hard to get in. Then if she can't figure it out, or gets bored trying, she can go away and do something else. If you lock her in, she's trapped, which is not good.
WARNINGS OF DANGER
Some puzzles have an element of danger to make them more interesting. No pain, no gain! But you must be fair and not just allow the player to fall into a trap with no warning. You must also do your very best to ensure nobody dies dead-dead while attempting to solve your puzzle.
The puzzle area needs to be clearly segregated from the main part of your planet, so that nobody can stumble into it while trying to find their way from the LP to the exchange.
It's a good idea to put an insurance check somewhere around the start of the puzzle area. You could warn players who are not insured that it would be a very bad idea to proceed, or you could turn them back completely so they cannot attempt the puzzle without insurance. This is what happens with the Graveyard puzzle.
While you don't have to put up a big warning sign before every trap or dangerous location, you need to give the player information about what kind of dangers she might encounter, and how she can avoid them, so that if she pays attention and thinks about what she is doing she will stay safe.
Remember that although you don't want to make your puzzle too easy, if you make it unfair the player will get cross and just give up.
PUZZLE LOGIC
If your puzzle has a series of obstacles that need objects to get the player past them, make sure it's possible to get hold of the items needed for the first barrier. It's all too easy to slip up and create a series of obstacles where all the objects are behind other obstacles - and the more obstacles there are, the more complex this gets, the easier it is to mess up the logical order that the tasks need to be completed in.
To illustrate: Door A leads to room 1. It can only be opened with Keycard A, which can be found in room 2.
Door B leads to room 2, and can only be opened with Keycard B, found in room 1.
It is therefore impossible to open either door!
ACCIDENTAL ENCOUNTERS, CHEATING AND BRUTE FORCE
You need to make sure that players cannot stumble across something that relates to your puzzle accidentally. You don't want anybody to be able to start it halfway through! Information that players need in the middle of a puzzle should not be given freely; it should require the player to do something that she would only know about if she had already done the first part of the puzzle.
Beware of players using the "brute force" method of solving puzzles. Make sure the player cannot guess the magic word when she talks to a mobile. You could include penalties to discourage random guessing: if a password is required before a guard will let her through a door, perhaps there is a punishment for giving the wrong password, in the form of a stam drain as the guard roughs her up and ejects her. Nothing too draconian, just enough that the cumulative effect will stop people trying words at random.
If an object is required to solve a puzzle, you may have a command on the object - but make sure the command only works in the right room. To stop the player trying to use the object everywhere until she accidentally hits on the correct location, make sure there's a consequence for trying it in the wrong place - she loses the object or has some stamina taken away.
Try to think of all the ways somebody could cheat, and put something in to stop those ways from working.
SECRET ROOMS AND MAZES
When designing the map for your puzzle area, you need to remember that many players use FedTerm as their front-end, which means the auto-mapping will show the exits from a room. This means you can't use a "security through obscurity" approach to hiding the entrances to secret rooms. If you leave the directions out of your description, the exit will still be visible on the map.
You will have scope with the up, down, in and out directions which don't show up on the map, but brute force means players can still find those easily by just trying to move and seeing what happens.
You need to make the access to your secret rooms by something other than a direct movement link - the player searches for a hidden door or a secret lever, which moves them into the secret room, or the player carries out some other action which operates the hidden door.
Another consequence of the auto-map is that the player is probably not going to get lost. If you want to confuse her and make it hard for her to find her way around, you will need to jump her around between non-adjacent locations.
Finally, forget about the type of maze where all exits lead back to the same location - with auto-mapping, it's immediately obvious to the player whether she has moved to a new location or not, and anyway, the exits look like a real mess. Go look at the maze in the Martian ruins if you want to see how this kind of maze works - or rather, doesn't - with FedTerm!
6.3 HIDING SECRETS
This lesson teaches you how to hide things so that the player has to search for them. After all, a puzzle would be no fun if everything was out in the open for the player to stumble over. It builds on past lessons about location commands, random calls and percentages as well as many other scripts you should now be familiar with.
THE SEARCH COMMAND
There is a game command which allows the player to search a room - 'SEARCH'. Trouble is, it doesn't actually do anything except tell her she has found nothing, and knock off a bit of stamina to discourage brute force search-every-room-just-in-case tactics. Its only purpose is to act as a default on locations where there is nothing to find, which let's face it is going to be the majority of locations on your planet.
If you want there to be something to find in a location, you need to override the standard 'SEARCH' command with your own event, by adding the command to the location.
WHAT KINDS OF THINGS CAN YOU HIDE
A search event reveals to the player whatever it is you have decided should be hidden in the room. There are no actual hidden objects that suddenly show up - searching won't make invisible objects suddenly visible. Instead, the search event will simulate the things the player has found. Here's some of the ways you can do that.
Secret Doors
A common use of searching is to reveal a secret door or concealed exit. In its simplest form, the search shows the player the door then moves her through it, closing it behind her so that every person needs to perform a separate search. The secret entrance to the Temple of Gaelaan in the workshop on the Moon works this way.
Hidden Objects
The search could reveal something important the player needs to complete her quest by creating an object in her inventory. This is what happens when you search in the courtyard in the Martian ruins - you find a variety of artefacts.
The search could tell the player about a static invisible object in the room - not making it visible but just telling her there's something she can manipulate, for example, a button which can be pressed. Once she knows the object is there she can press it to open the secret door at any time without having to search again; she could also tell her friends how to open the door.
The search could move a static object out of the storeroom into the location, in which case it would suddenly be visible to everybody in the room, not just the player who did the searching. If you are going to do this, you need to consider what happens if the object is already in the room when a player searches for it, and include a check to see if the object is already out in the open. This is a good use of the object size. Use it to determine where the object is - 1 for in the storeroom and 2 for in the location. You could put a command on the object to hide it again, so a crafty player can stop anyone else from benefitting from her search - this would just move the object back into the storeroom. Just remember, every time the object moves, to change the size to indicate the changed state. This is very similar to the way the box on Mercury works, except that instead of moving the object, it sets the box as open or closed.
Camouflaged Mobiles
A search might reveal a mobile which is hiding in the shadows or concealed behind something. If she tries to proceed without searching, , she is turned back or killed. She has to first search to identify the mobile, and then find a way to get past it by bribery, trickery or violence.
Disarming Traps
Traps are a staple of fantasy role-playing games and players who don't disarm them come to grief. You could include some traps in your puzzle, to keep the player on her toes (or equivalent) and ensure those who wander about without paying attention come to grief.
The act of searching would disarm the trap and all would be well, but proceeding without doing a search would trigger the trap with potentially disastrous consequences.
SEARCHING SAPS STAMINA
Along with the scripts needed to control the results of the search, you need to use changestat to knock off 10 stamina points. This brings your search event in line with the default game command.
GIVING CLUES
Since you want to avoid players searching any and all locations just in case, you need to give some clues about where might be a likely place to conduct a search.
The description of the location might give a hint:
You think something looks odd about the room.
The two places in Sol with search events have similar information in their descriptions:
Workshop
You are standing in the northeast corner of a massive underground workshop. There is a large pile of crates in the corner, which seem to have been piled up rather haphazardly. Something just seems odd about them...
Courtyard
The high walls around this courtyard cut you off from the outside completely.
In the center of the courtyard is a matt black pillar surrounded by the bones of creatures - some unknown, others only too recognizable as human skeletons.
In one corner of the courtyard is a heap of rubble. A glint of metal amongst the rocks indicates there might be something interesting concealed there.
If you don't want to make it that easy for the player, you could put the clue which leads her to the right place to search elsewhere. The information could be in the description of another room, in an object description, given when an object is manipulated, or something she is told by a mobile.
VARYING THE RESULTS OF A SEARCH
A search does not always have to give the same result - you can vary the outcome in a variety of ways.
If you search for artefacts in the courtyard in the Martian ruins, the object you find varies. There is a random call which picks between several different events, each of which creates a different object.
You could also have a search which sometimes succeeds and sometimes fails, either using a random call to select between the two outcomes, or using the percent script to set the weighting at something other than fifty/fifty.
Perhaps the search only succeeds if some other condition has been met first. The player could need to carry a specific object, or to have completed some other task first. (The lesson on keeping track of player progress, which we will get to shortly, will teach you how to do that.)
The event called by the "search" command would do whatever checking was necessary to decide what the outcome could be - it could use a random call, or check the inventory, or whatever. This event would then call the various outcomes - success or failure at the search.
If the search fails, you need to tell the player she has struck out. You can repeat the standard game message for a failed search:
You spend some time searching the area thoroughly, but with no result, apart from leaving you feeling exhausted.
or you can invent your own. If you do the former, it gives no hint that there might be something to find under other circumstances; the latter will give the player a clue that all is not as it seems.
Of course, a failed search might have more serious consequences. A conditional search can be used to punish a player who uses the brute force approach, or who has been told the puzzle solution by another player and is trying to take a short cut. If she hasn't met the pre-conditions, something terrible could happen to ensure she learns her lesson.
6.4 DELAYED EVENTS
This lesson teaches you how to introduce a delay into events - a pause which separates things that happen as a result of your events.
HOW TO DELAY AN EVENT
The mechanics of setting up a delayed event are very simple. At the point where an event is called - either by a trigger or by another event - you insert an extra event which includes an instruction to the game to pause for a specified length of time. This is done with the delayevent script. It has three parameters:
· The number of seconds you want the delay to last
· The event which should run after the delay has elapsed
· The event which should run if the player is no longer in the game (you would usually leave this blank, but see below for an explanation)
The script looks like this:
delayevent script: delay 4: event moves.cab.2
In other words, the game will wait four seconds and then run event 2.
A PRACTICAL EXAMPLE
You can see an example of a delayed event if you take the hovercab ride from Earth's hospital to the spaceport. There is a delay in the journey which splits it in two, and gives the impression that the trip is taking time to complete.
In its simplest form, ignoring all the stuff to do with money, the cab ride would involve just one event. The player types 'HAIL CAB' which triggers the event. The event contains a move script which puts her at the spaceport, and a message script which tells her what is happening. However, because there is a delay built into the journey it actually uses two events. The first event, which is triggered by the player typing the command, tells her that the cab has arrived and she has got into it. It then calls the second event with a short delay. That event takes her to the spaceport and tells her about the rest of the journey.
The events look like this:
Start event: #1
comment: Cab ride from hospital - loc 1305 - called on "hail cab"
message script: type single: to whom individual: low moves.cab.1
delayevent script: delay 3: event moves.cab.4
end event: #1
Start event: #2
comment: Cab ride - arrival
message script: type single: to whom individual: low moves.cab.4
move script: what player: to whom individual: location 520
end event: #2
STOPPING THE PLAYER FROM MOVING INDEPENDENTLY
When you use a delay, you need to consider what the player might do during the pause. If the events that include the delay are intended to be a journey, such as the hovercab ride, you need to stop the player from moving out of the location under her own steam while the simulated journey is still happening, otherwise the results may look a little odd.
You can do this by using a script that disables all the player's direction commands, so she is completely unable to move anywhere. The script is freeze and it doesn't have any parameters.
To reverse the process - which you must do at the end of the journey - you use the release script which puts back the direction commands.
The effects of a freeze last until the player is released, or until she logs off. When she logs back on, she will be able to move, but because the delayed events will be cancelled she will have to start the journey all over again.
A freeze must always be paired with a release, to make sure the player does not end up trapped and unable to move.
Here are the cab ride events again, this time with the freeze and release added:
Start event: #1
comment: Cab ride from hospital - loc 1305 - called on "hail cab"
message script: type single: to whom individual: low moves.cab.1
freeze script
delayevent script: delay 3: event moves.cab.4
end event: #1
Start event: #2
comment: Cab ride - arrival
message script: type single: to whom individual: low moves.cab.4
move script: what player: to whom individual: location 520
release script
end event: #2
IF THE PLAYER LOGS OFF
If the player logs off before the delay is up, the event will not run - the game will cancel any events in the player's queue. If the event is intended to do something to the player, such as move her or send her a message, then it doesn't matter if the events don't run - obviously those things cannot happen if she's no longer in the game.
However, sometimes a delayed event is intended to do something that affects other players or the game itself: move an object in or out of the storeroom, or reset something back to its starting state. In that case, you do not want the events to stall just because the player that triggered them has gone. So you ensure they do still happen even in her absence by putting the event number in the "Event if logged off" parameter as well:
delayevent script: delay 4: event moves.cab.2 log off delay.test.3
The ordinary delayed event and the event if logged off do not have to be the same event, in fact, there are often good reasons to have a different event. That's because the event that's called to run when the player has logged off should not contain any scripts that affect the no-longer-present player. The only scripts allowed are those that do something to the game, independent of the player who called the event. The scripts which are allowed are:
announce
call
changelink
delayevent
There are some scripts that can be called by logoff events which won't do anything, such as message scripts or move players, but they won't do any harm, either. However, anything that involves objects will do funny things to the game if the events are on the "Logoff" parameter, so you should never, ever use scripts that reference an object by name or ID in delayed events to be called after the player has logged off.
REASONS TO DELAY EVENTS
Now you know the mechanics of how to delay an event, I will give you some ideas about when and how to use delays. There are many reasons to delay an event - to add atmosphere, to generate suspense, to require a player to have fast reflexes, to slow things down so the player has time to read a message, or just for entertainment value.
Slowing Down Movement
If you want to move the player between locations automatically, without her having to type directions, you can do that with events - this is a simple variation on the cab ride, where successive messages give the impression of moving through locations automatically. But you need to have a pause in between each of the moves, otherwise there won't be time for her to read the text in each location. The hovercab ride on Earth is a simple example of this; for a much more complex example, sit on the Venus shuttle or the Earth monorail for a while and watch what happens.
Adding Atmosphere or Suspense
Delayed events can be used to up the suspense factor. The player does something which she knows is going to have an effect, but it doesn't happen right away. A delay of a few seconds makes her wonder if she has done the right thing.
Use delayed events to add to the atmosphere. How about a delayed event that sends a warning message to the player every so often while she explores a dangerous area of a planet? Using delayed events to produce the effect means it won't always happen when the player is in the same place, so won't be so predictable. Spooky! Also consider combining this with the random function to make everything even more unpredictable.
Helping the Story
Sometimes adding a delay makes the story more believable. There's no examples of this in the game at the moment, but imagine that the player has to make an appointment to see someone in the Galactic Administration. She would type whatever command was necessary to request the appointment, and be told to wait... a delayed event would then send someone to fetch her, even if she had moved to a different location.
Testing Reflexes
A staple of the first-person-perspective role-playing game is requiring the player to react fast. She pulls a lever, a door opens then closes again - she has to run fast to get through it. She enters a room, and a guard is alerted - she has to grab what she's after and get out fast, before she's attacked. And so on.
You can use a delayed event to force a player to move fast if she wants to succeed. However, this technique should be used sparingly. Fed2 isn't an action game. Failure to move fast enough shouldn't cause the player to lose anything except her progress forward - at least, not too much! Remember that internet lag might make reacting fast very tricky, so be generous in the amount of time you allow for the action to be completed.
Putting On a Show
If you are hosting a party or a special event, you can use delayed events to provide some kind of entertainment - a fireworks display, a parade, a cabaret. You use events to send messages to the room which describe the entertainment, with delays to slow things down and give players time to read and comprehend what's happening.
The trigger for the sequence could be a secret command only you know about, so you can start the show whenever you want, and re-run it later if you choose.
Rolling Announcements
Similar to putting on a show are rolling announcements which, once started, keep on going and going. When the last message is played, a delay calls the first event in the sequence and round they go again. Or they could be selected by a random call, which is what happens with Earth's spaceport announcements - the first event in the sequence has a random call, and each event sends a message then calls the original event with a delay in it.
But these announcements have something special about them, because they don't rely on a player to do something to start the sequence going - they start as soon as the game fires up. You can put this kind of event on your planet, too. What you do is to create a category and section both called "start". Into that category and section, put an event that contains a delayevent script with a delay on it of 10 seconds or more, which calls the first of the announcement events using the "Event if logged off" parameter. The actual announcement events must be in a different category and section - the only thing allowed in start.start is the delayed call which kicks everything off.
When the game fires up, it runs any events contained in the start.start category and section, so the announcement sequence will start automatically after the initial delay.
Clearing Up
Delayed events can be used to clear things up after a player has finished exploring somewhere - after a delay, you close doors, move objects or mobiles back to the storeroom and so on.
HOW LONG TO DELAY
There is a limit on the length of delay you can put on an event. The limit is one hour, or 3600 seconds. This is an absolute limit, and you should not attempt to get around it by chaining different delayed events together.
If you have frozen a player, don't delay things too long, otherwise she might think the whole game has siezed up on her. For a simple set of events, a 4 second delay is reasonable. It really depends on how long your messages are; the more text you send to the player, the longer the delay will need to be in order to give her time to read it. You will probably have to experiment by adjusting the delay until it seems right.
Note that the actual number of seconds a delay will last is only approximate, and may vary by a second either way, so you cannot use delayed events with split-second timing.
INCLUDING A CHECK AFTER THE DELAY
You now know about the consequences of the player logging off before the delayed event runs, but there are other things the player can do which might invalidate the delayed event. For example, she might move somewhere else, into space or even out of your star system. You could end up with something very illogical if a delayed event that relates to your planet happens on the other side of the Galaxy. Even if the player has just moved to another location on the map, it might spoil the effect you intended. Or if the delayed event has something to do with an object in the player's inventory, what if she is no longer carrying it by the time the delay is up?
If there is any chance that the player's actions might invalidate the delayed event, then you need to slip some checks into the sequence - after the delay, but before the resulting scripts get carried out. The sequence goes like this:
Delay starts the clock ticking.
Wait...
Delay comes to an end - check if conditions still apply.
If they do, do the business.
You can see some checks incorporated into delayed events with the candle which you get from the box in Mercury's Solarium. Light the slow-burning candle and it burns in seven segments, with a delay of 30 seconds in between each color change. But if the player drops the candle the events stop, and if she takes it into a bar the events change. Here's the events that make this happen:
Start event: #5
Comment: Light candle outside bar - burn 1
message script: type single: to whom individual: low objects.candle.6
message script: type single: to whom room_ex: low objects.candle.7
delayevent script: delay 30: event objects.candle.6
End event: #5
Start event: #6
Comment: Candle burn 2 - checks
checkinventory script: map home: id/name candle: not-found stop
checklocflag script: flag bar: set objects.candle.18: unset objects.candle.7
End event: #6
Start event: #7
Comment: Burn 2
message script: type single: to whom individual: low objects.candle.8
message script: type single: to whom room_ex: low objects.candle.9
delayevent script: delay 30: event objects.candle.8
End event: #7
THE FULL SET OF HOVERCAB EVENTS
For the sake of completeness, here are the full set of events for the hovercab ride, including checking the bank balance and taking the groats for the fare:
Start event: #1
Comment: Cab ride from hospital - loc 1305 - called on "hail cab"
message script: type single: to whom individual: low moves.cab.1
End event: #1
Start event: #2
Comment: Not enough funds for cab ride
message script: type single: to whom individual: low moves.cab.2
End event: #2
Start event: #3
Comment: Cab ride - start
message script: type single: to whom individual: low moves.cab.3
freeze script
delayevent script: delay 3: event moves.cab.4
End event: #3
Start event: #4
Comment: Cab ride - arrival
message script: type single: to whom individual: low moves.cab.4
move script: what player: to location 520
release script
End event: #4
6.5 HOW TO ADD AN AIRLOCK TO YOUR PLANET
This lesson teaches you how to add an airlock to your planet, similar to the ones on Sumatra. It builds on previous lessons about how to move players, and delayed events.
HOW THE SUMATRAN AIRLOCKS WORK
The airlocks on Sumatra use a particular technique that you might want to copy on your planet. The player touches the touchpad and is moved into the airlock. There is a delay while the pressure is equalized, then she is moved out of the airlock to the inside of the dome (or outside if she was leaving).
This is different from previous methods of transportation you have learned about, such as the cab ride, because here there is an actual airlock location that the player has to wait in. There are no movement links in and out of the airlock; the only way in and out is to be moved there by events. Here's what the three locations look like:
[OUTSIDE] [AIRLOCK] [INSIDE]
The first event is triggered by the command 'TOUCH TOUCHPLATE' (an invisible object called "touchplate" with the command "touch" on it), in the outside location. The event moves the player into the airlock, using the move script, and sends a message telling the player what is happening. It calls the next event with a delay of 5 seconds.
The event that runs after the delay moves the player to the inside location, and sends another message.
To get back out of the dome, there is another touchpad object on the inside with a set of events that do the same thing, but culminate in moving to the outside.
There is one more event that you need to write. You need to provide a means to escape from the airlock. This is necessary because the player might log off while in the airlock, which would mean she wouldn't be moved out of it. When she logs back on, she will still be there, trapped.
To provide an escape, you need to put an event on the In Room trigger of the airlock. This uses checklastloc to see where the player has been:
checklastloc script: location -1 pass objects.touchpad.2
If the player was in location -1, it means she has just logged on, in which case the escape event runs. If she came from elsewhere, then nothing happens.
The escape event moves her out and tells her what's happening.
THE EVENTS
Start event: #1
Comment: from the outside into the lock
message script: type text: to whom individual: text 'You touch the pad and the portal opens to admit you. You step into it and the outside iris closes behind you.'
move script: what player: to location 966
message script: type text: to whom individual: text 'A sign tells you to wait while the pressure equalizes.'
freeze script
delayevent script: delay 5: event objects.touchpad.2
End event: #1
Start event: #2
Comment: from the lock to the inside
message script: type text: to whom individual: text 'The wait sign blinks out and the inner iris dilates, allowing you to enter the colony.'
move script: what player: to location 1030
release script
End event: #2
Start event: #3
Comment: from the inside into the lock
message script: type text: to whom individual: text 'You touch the pad and the iris dilates allowing you to enter.'
move script: what player: to location 966
message script: type text: to whom individual: text 'A sign blinks on to tell you to wait while the air in the lock is removed.'
freeze script
delayevent script: delay 5: event objects.touchpad.4
End event: #3
Start event: #4
Comment: from the lock to the outside
message script: type text: to whom individual: text 'The wait sign blinks off and the outer iris dilates to allow you out. You step through the portal and onto the surface.'
move script: what player: to location 1029
release script
End event: #4
Start event: #5
Comment: Important - handle log off before the delay event runs - last loc of -1 means just logged on trigger is loc 966 in room
checklastloc script: location -1: fail stop
message script: type text: to whom individual: text 'You realise that something has gone wrong with the airlock mechanism, so you press the alarm button. After a few moments there is a loud -CLANG- and the inner iris dilates with a show of reluctance. A maintainance worker holding a large hammer helps you out and tells you that it sometimes sticks shut.'
move script: what player: to location 1030
End event: #5
Interesting Note
You may have noticed that unlike most of the events used as examples in this manual, the Sumatran airlock events use text embedded in the message script rather than pulling text from the message file. That's because I did not write these events - Freya did. Her method of writing events is different from mine; she prefers to have the text in the scripts, while I favor putting the text in the message file.
Neither way is right or wrong, it comes down to individual choices about methods of working. You will choose your own method as you become accomplished at writing events.
6.5 KEEPING TRACK OF PLAYERS
This lesson explains some of the different ways you can keep track of players. If you are writing a puzzle of any kind you will need to incorporate checks into your events that monitor how far players have got with the puzzle, so you know what information to give them at what time. This will stop players from stumbling across a later part of the puzzle, before they have completed the earlier stages.
There are a number of different ways to keep track of a player's progress and restrict puzzles so that only the right players can proceed. Each of the methods have their advantages and disadvantages. This lesson will go though the different methods and explain when they should be used.
KEYS AND TICKETS
Perhaps the most obvious way to make sure only players who have got so far in a puzzle can enter a room, or talk to a mobile, or otherwise proceed, is to generate an object such as a key, a letter of introduction, an invitation, a ticket or a passcard. You can then check for the presence of the object and only allow those possessing it to proceed.
The advantage of doing this is that it makes it quite clear to the player when she has what's needed. If she finds a locked door, she knows she needs to get a key; if she has a key, she knows she can use it to unlock a door.
One disadvantage is that the player might lose the object or accidentally drop it. You therefore need to make sure there is a way for the player to get another copy of the "key" object.
Another disadvantage is that if the puzzle is long and complex the player will end up with a fistful of keys and documents. There's a limit to how many times you can use this method before it becomes tedious and contrived. There are other disadvantages to using keys as objects, which were covered in the previous lesson.
OBJECTS THAT HAVE DIFFERENT STATES
If you do want to use an object as a check on a player's progress, it doesn't just have to be a check to see if the player is carrying the object. You can set the object's size to different values, to indicate different stages in the puzzle, and then check for the size. You learned how to do this in an earlier lesson.
However, this has the downsides mentioned above with objects that could get lost, and if the player loses the object and has to get a new one, the state will be at its starting position so she loses all progress.
PASSWORD PROTECTION
If progress depends on talking to a mobile, then it's easy to make sure only the player who has completed the necessary preliminary steps is given the information she needs, or is allowed to proceed. Simply make one of the magic words something obscure that nobody would ever guess. Then you can give that word to the player at some point in the puzzle, after which she can get past the mobile.
But this has the disadvantage that a player who has completed the puzzle can give the password to her friends, allowing them to short circuit the earlier parts of the puzzle.
THE ANSWER: PLAYER VARIABLES
There are disadvantages to all of the methods discussed so far. What we need is a way to determine different states for a player, rather than for an object she is carrying, and which get lost and can't be shared with anyone else.
That way is to set player variables. These are like little sticky labels you can attach to a player, at various points in a puzzle. You can then check to see what the labels actually say and vary the outcome accordingly. They are completely invisible to the player, and are only used internally by your events.
Player variables can be used in all sorts of situations - not just in complicated puzzles. They can keep track of much simpler things, as you will see as you read through this lesson. But first, before getting to the uses to which you can put player variables, let's cover the technical stuff about how they work.
A variable has three parts: a name, a key, and a value. They can include numbers as well as letters, but no punctuation and no spaces. You always use all lower case when referring to variables in your events.
The variable name must start with the name of one of your planets, ie bodville, bodville2, bodvillepuzzle, bodvilletungsten would all be acceptable. If you want to use a variable across the planets in your system, you can, so you can set a variable on one planet and check it or change it on another - but you must only use variables from one of your planets.
Given that you can use whatever words you like for your variable keys and values, it makes sense to choose something logical so you will be able to remember them. The key should describe the particular part of your puzzle, or the area of the your planet, where it's going to be used: "doorway" or "box" or "guard".
For each key, you assign a value, and you can change the value as the player does things. It is the value that records the player's progress or state. For example, the key "vault" might be given a value of "open" once the player has succeeded in opening the vault.
The game will remember the value you give to each variable key, and you can specify whether it remembers it forever, or forgets it again at reset.
You give a value to a variable by setting the value - you can change it as often as you want by setting it again - and you then check the value to determine which events should be run.
EXAMPLES OF PLAYER VARIABLES
Player variables are used extensively in the Graveyard puzzle, but I am not going to give you examples of those events, because it would give away some of the puzzle answers! Luckily, there are some examples in the Solar System of variables being used on less important things.
To see these two examples, you will have to venture into the Martian ruins. You will need to find the map room and the altar in the temple. Make sure you are insured before you head into the ruins, and if you haven't explored them before, read the descriptions carefully so you can avoid stepping into danger.
SETTING A VARIABLE
The script to use is setvariable and it has four parameters:
· The variable name
· The variable key
· The value you want to set for that key
· Whether the variable is temporary or not
Here is an example of the script, as used in the map room:
setvariable script: name marsruins: key map: value iridium: temporary true
This sets the key "map", on variable name "marsruins", to the value "iridium". It refers to the switches on the map, and keeps track of which switch the player has flipped.
CHECKING A VARIABLE
Having set a variable, you will need to check to see what the value is. The script is checkvariable, and it has five parameters:
· The variable name
· The variable key
· The value you want to check for
· The event to call if the variable is set to the specified value
· The event to call if it's not
Here's what it looks like when used on the map:
checkvariable script: name marsruins: key map: value iridium: equals objects.map.12
In this case, the script is checking to see if key "map" is set to value "iridium", and if the answer is yes, it is calling an event. If it's not set to that value, nothing is happening.
The usual way to use this script is to run several checks, one after the other, that test for all the possible values a key could have. With the map, the value can be iridium, rhodium or osmium. So the event which checks to see what the player's state is related to the map contains a check for each of those possible values:
checkvariable script: name marsruins: key map: value osmium: equals objects.map.12
checkvariable script: name marsruins: key map: value rhodium: equals objects.map.13
checkvariable script: name marsruins: key map: value iridium: equals objects.map.14
TEMPORARY AND PERMANENT VARIABLES
The setvariable script allows you to set both temporary and permanent variables. A temporary variable gets zapped at the reset; a permanent variable stays forever unless you clear it using another event. The script defaults to temporary. For most uses of variables, such as keeping track of mobile conversations, don't change this - otherwise the list of things the game has to remember will keep on growing and growing.
However, for puzzles where the player's progress needs to be remembered over resets, use the dropdown box to change the parameter to permanent.
Note: right now there is a bug which means all variables, including temporary ones, are remembered over the reset. This will be fixed soon, so make sure you set this parameter correctly now.
UNSET VARIABLES
Before you set a key to a particular value, or after the reset if it was a temporary variable and has been zapped, it does not exist and the value is set to "unknown". You can check for that value if you want to know whether or not the player has encountered the thing that sets the variable. You can also set a key to "unknown" at any point, which has the effect of clearing that key completely. You can also use this to set the player back to square one for a particular part of the puzzle if she messes up. The events which control the map in the Martian ruins set the variable back to "unknown" when the map operates:
setvariable script: name marsruins: key map: value unknown
As well as clearing a key, you can delete an entire variable using the clearvariable script. This has just one parameter, the variable name:
clearvariable script: name marstemple
Using this gets rid of all the keys for the variable. You can use this to get rid of variables once you have finished using them, which stops the game from having to store an ever-increasing number of variables, and keeps from straining resources. When a player gets to the end of your puzzle and solves the final stage, you can clear away all of the variables that were used throughout the puzzle, and then just set one key to show she has completed the puzzle.
You can also use this script to reset the whole puzzle back to its starting state for the player if she makes a huge mistake.
This script is used in the example of the temple blessings at the altar in the ruins. Once the player has made the required offerings and received a blessing, the variable is cleared.
A SIMPLE EXAMPLE OF HOW TO USE VARIABLES
Your use of variables will vary from simple and straightforward to complex and somewhat confusing. Let's start with a very simple example: a Welcome to My Bar message.
Way, way back in the early lessons, when you were a tyro learning your first fumbling events, I used the example of a player walking into your bar and being welcomed. I explained how you could check which direction a player had come from to determine whether she should receive the welcome or not.
Well, if you use variables, you can welcome her the very first time she walks into the bar, but never again. You do this by putting an event on the In Room trigger of the bar that checks a variable. First, you need to decide what the variable's name, key and value will be - for example, name "bodvillebar", key "welcome", value "given".
The checkvariable script will then check for that value and if it is found, will do nothing. However, if it's not found, it will call the event which gives the welcome. It looks like this:
checkvariable script: name bodvillebar: key welcome: value given: not-equal bar.welcome.2
The event that gets called if the variable is not set uses a message script to send the welcome, and sets the variable key to value "given". This ensures that she won't get the welcome again:
setvariable script: name bodvillebar: key welcome: value given
Note that in this case you need to set the variable as permanent, so use the dropdown box to change it.
Of course, you could decide it's a bit unfriendly to just drop the welcome message completely if the player returns. Instead, you could send a different message to returning visitors which welcomes them back. In that case, the checkvariable script would call the "welcome" event for first-timers as before, but would also call the "welcome back" event on the "Equal to" parameter:
checkvariable script: name bodvillebar: key welcome: value given: equals bar.welcome.3: not-equal bar.welcome.2
The "welcome back" event sends a message but doesn't tamper with the variable.
MORE COMPLEX VARIABLES: COMPLETING TASKS IN A PARTICULAR ORDER
A puzzle generally consists of a series of tasks a player has to complete. Each time the player completes a task, she progresses a little closer to her final goal, and variables are used to keep track of this progress. At various points in the puzzle, the point of progress she has reached is going to determine what she sees, what information is given to her by a mobile, and what actions she can carry out.
Sometimes the tasks that make up a puzzle have to be done in a strict order; sometimes they can be done in any order. First, we'll look at using variables to keep track of the player's progress when the tasks have to be done in the right order. We will use the map in the Martian ruins as an example.
If you haven't found the map yet, stop reading and go explore the ruins until you do - you need to be able to play with the map as you read through the rest of this section.
The map is a visible object in the room, and when you examine in, what you see will depend on your previous actions. There are three switches on the map which you can flip, but only in the right order. The correct order is:
FLIP IRIDIUM SWITCH
FLIP RHODIUM SWITCH
FLIP OSMIUM SWITCH
Each time you flip a switch, the description of the map will change. That's because there is an "examine" command on it which calls an event to check the progress you have made with the map. There are four states that the map switches can be in: unknown, iridium, rhodium and osmium. These refer to which switch or switches has been flipped. Here's the event that does the checking:
Start event: #1
Comment: Examine map - give basic desc then check state of switches
message script: type multi: to whom individual: low objects.map.1 to high objects.map.2
checkvariable script: name ruins: key map: value unknown: equals objects.map.2
checkvariable script: name ruins: key map: value iridium: equals objects.map.3
checkvariable script: name ruins: key map: value rhodium: equals objects.map.4
checkvariable script: name ruins: key map: value osmium: equals objects.map.5
End event: #1
This sends the basic description of the map, then depending on the outcome of the checks, calls the appropriate event to send a message describing the state of the switches.
So what happens if you flip a switch? That depends on which switches you have already flipped, since these tasks have to be completed in order. Flip a switch too soon - for example, try the osmium switch first - and it won't work. Flip a switch that you have already flipped and it won't go back. Each "flip" command checks the various possible settings of the variables and gives the appropriate result. The possible results are: you can't flip that switch yet; you have already flipped that switch; or you succeed in flipping the switch. In the latter case, the variable is changed to its new value.
setvariable script: name ruins: key map: value iridium: temporary true
The final action in this mini-puzzle - the equivalent of solving it - is to CONNECT WIRE. Try this before all three switches have been flipped, and the map doesn't quite work. But if all three have been turned on, the map lights up and... well, see for yourself!
Whether the map works on not, connecting the wire sets the variable back to "unknown" so the player loses all progress as the switches turn off again.
Here is the complete set of events that make the map work:
Start event: #1
Comment: Examine map - give basic desc then check state of switches
message script: type multi: to whom individual: low objects.map.1 to high objects.map.2
checkvariable script: name ruins: key map: value unknown: equals objects.map.2
checkvariable script: name ruins: key map: value iridium: equals objects.map.3
checkvariable script: name ruins: key map: value rhodium: equals objects.map.4
checkvariable script: name ruins: key map: value osmium: equals objects.map.5
End event: #1
Start event: #2
Comment: Unknown
message script: type single: to whom individual: low objects.map.3
End event: #2
Start event: #3
Comment: Iridium
message script: type single: to whom individual: low objects.map.4
End event: #3
Start event: #4
Comment: Rhodium
message script: type single: to whom individual: low objects.map.5
End event: #4
Start event: #5
Comment: Osmium
message script: type single: to whom individual: low objects.map.6
End event: #5
Start event: #6
Comment: Flip switch
message script: type single: to whom individual: low objects.map.26
End event: #6
Start event: #7
Comment: Examine iridium switch - check state
checkvariable script: name ruins: key map: value unknown: equals objects.map.8
checkvariable script: name ruins: key map: value iridium: equals objects.map.9
checkvariable script: name ruins: key map: value rhodium: equals objects.map.9
checkvariable script: name ruins: key map: value osmium: equals objects.map.9
End event: #7
Start event: #8
Comment: Unknown
message script: type single: to whom individual: low objects.map.7
End event: #8
Start event: #9
Comment: Iridium, rhodium or osmium
message script: type single: to whom individual: low objects.map.8
End event: #9
Start event: #10
Comment: Flip iridium switch - check state
checkvariable script: name ruins: key map: value osmium: equals objects.map.12
checkvariable script: name ruins: key map: value rhodium: equals objects.map.12
checkvariable script: name ruins: key map: value iridium: equals objects.map.12
checkvariable script: name ruins: key map: value unknown: equals objects.map.11
End event: #10
Start event: #11
Comment: Unknown
message script: type single: to whom individual: low objects.map.9
setvariable script: name ruins: key map: value iridium: temporary true
End event: #11
Start event: #12
Comment: Iridium +
message script: type single: to whom individual: low objects.map.10
End event: #12
Start event: #13
Comment: Examine rhodium switch - check state
checkvariable script: name ruins: key map: value unknown: equals objects.map.14
checkvariable script: name ruins: key map: value iridium: equals objects.map.14
checkvariable script: name ruins: key map: value rhodium: equals objects.map.15
checkvariable script: name ruins: key map: value osmium: equals objects.map.15
End event: #13
Start event: #14
Comment: Unknown or iridium
message script: type single: to whom individual: low objects.map.11
End event: #14
Start event: #15
Comment: Rhodium or osmium
message script: type single: to whom individual: low objects.map.12
End event: #15
Start event: #16
Comment: Flip rhodium switch - check state
checkvariable script: name ruins: key map: value osmium: equals objects.map.19
checkvariable script: name ruins: key map: value rhodium: equals objects.map.19
checkvariable script: name ruins: key map: value iridium: equals objects.map.18
checkvariable script: name ruins: key map: value unknown: equals objects.map.17
End event: #16
Start event: #17
Comment: Unknown
message script: type single: to whom individual: low objects.map.13
End event: #17
Start event: #18
Comment: Iridium
message script: type single: to whom individual: low objects.map.14
setvariable script: name ruins: key map: value rhodium: temporary true
End event: #18
Start event: #19
Comment: Rhodium +
message script: type single: to whom individual: low objects.map.15
End event: #19
Start event: #20
Comment: Examine osmium switch - check state
checkvariable script: name ruins: key map: value unknown: equals objects.map.21
checkvariable script: name ruins: key map: value iridium: equals objects.map.21
checkvariable script: name ruins: key map: value rhodium: equals objects.map.21
checkvariable script: name ruins: key map: value osmium: equals objects.map.22
End event: #20
Start event: #21
Comment: Unknown, iridium or rhodium
message script: type single: to whom individual: low objects.map.16
End event: #21
Start event: #22
Comment: Osmium
message script: type single: to whom individual: low objects.map.17
End event: #22
Start event: #23
Comment: Flip osmium switch - check state
checkvariable script: name ruins: key map: value osmium: equals objects.map.26
checkvariable script: name ruins: key map: value rhodium: equals objects.map.25
checkvariable script: name ruins: key map: value iridium: equals objects.map.24
checkvariable script: name ruins: key map: value unknown: equals objects.map.24
End event: #23
Start event: #24
Comment: Unknown and iridium
message script: type single: to whom individual: low objects.map.18
End event: #24
Start event: #25
Comment: Rhodium
message script: type single: to whom individual: low objects.map.19
setvariable script: name ruins: key map: value osmium: temporary true
End event: #25
Start event: #26
Comment: Osmium
message script: type single: to whom individual: low objects.map.20
End event: #26
Start event: #27
Comment: Connect wire - check state
checkvariable script: name ruins: key map: value unknown: equals objects.map.28
checkvariable script: name ruins: key map: value iridium: equals objects.map.29
checkvariable script: name ruins: key map: value rhodium: equals objects.map.30
checkvariable script: name ruins: key map: value osmium: equals objects.map.31
End event: #27
Start event: #28
Comment: Unknown
message script: type single: to whom individual: low objects.map.21
End event: #28
Start event: #29
Comment: Iridium
message script: type single: to whom individual: low objects.map.22
setvariable script: name ruins: key map: value unknown: temporary true
End event: #29
Start event: #30
Comment: Rhodium
message script: type single: to whom individual: low objects.map.23
setvariable script: name ruins: key map: value unknown: temporary true
End event: #30
Start event: #31
Comment: Osmium
message script: type multi: to whom individual: low objects.map.24 to high objects.map.25
setvariable script: name ruins: key map: value unknown: temporary true
End event: #31
And here are the messages used:
<section name map'>
<para number='1' comment='Examine map - basic desc'>
The map is triangular and takes up the whole of one wall. It shows the layout of the Martian ruins before they were ruined, and all the text is in Martian which isn't much use. There is a twisted wire hanging loose from the bottom of the map - it looks as if it's supposed to connect to a terminal block on the floor.
</para>
<para number='2'>
Each point of the triangle has a switch set into it, made out of different metals: iridium, rhodium and osmium. There is a label on each switch, but you have no idea what the Martian says.
</para>
<para number='3' comment='variable - unknown'>
All the switches are in the off position.
</para>
<para number='4' comment='variable - iridium'>
The iridium switch is in the on position; the others are off.
</para>
<para number='5' comment='variable - rhodium'>
The iridium and rhodium switches are in the on position; the osmium is off.
</para>
<para number='6' comment='variable - osmium'>
All three of the switches are in the on position.
</para>
<para number='7' comment='Ex iridium switch - unknown'>
The iridium switch is in the off position.
</para>
<para number='8' comment='Ex iridium switch - iridium +'>
The iridium switch is in the on position.
</para>
<para number='9' comment='Flip iridium switch - unknown'>
You flip the iridium switch into the on position. Are you sure you know what you are doing? Playing with alien technology is seldom a good idea.
</para>
<para number='10' comment='Flip iridium switch - iridium p'>
The iridium switch is already in the on position, and you can't shift it back again. It seems you cannot change your mind, although its not too late to just walk away from this potentially dangerous piece of alien equipment.
</para>
<para number='11' comment='Ex rhodium switch - unknown/iri'>
The rhodium switch is in the off position.
</para>
<para number='12' comment='Ex rhodium switch - rhodium +'>
The rhodium switch is in the on position.
</para>
<para number='13' comment='Flip rhodium switch - unknown'>
You flip the rhodium switch into the on position, but it immediately flips back. It would probably be best if you stopped playing with this thing right now, before something terrible happens.
</para>
<para number='14' comment='Flip rhodium switch - iridium'>
You flip the rhodium switch into the on position. This really, really is not a good idea. Haven't you heard the stories about those who tamper with forces beyond their paltry abilities?
</para>
<para number='15' comment='Flip rhodium switch - rhodium +'>
The rhodium switch is already in the on position. Nothing you can do will turn it off again. You're doomed, doomed!
</para>
<para number='16' comment='Ex osmium switch - un/iri/rho'>
The osmium switch is in the off position.
</para>
<para number='17' comment='Ex osmium switch - osmium'>
The osmium switch is in the on position.
</para>
<para number='18' comment='Flip osmium switch - un/iri'>
You flip the osmium switch into the on position, but it immediately flips back. You should take this as a warning that this machine or whatever it is is not meant for mere mortals, at least not unless they are Martian mortals, and just leave it alone.
</para>
<para number='19' comment='Flip osmium switch - rhodium'>
You flip the osmium switch into the on position. Nothing happens, although all three switches are now switched on. Obviously the alien technology no longer works, so you can safely leave it alone now.
</para>
<para number='20' comment='Flip osmium switch - osmium'>
The osmium switch is already in the on position. No amount of jiggling and tuggling will persuade it to turn off again. Oh dear. That really isn't good. In fact it's extremely bad.
</para>
<para number='21' comment='Connect wire - unknown'>
You connect the wire and the map powers up. Lights start to flash all over it, and it makes a weird buzzing noise. The whole map starts to vibrate; clearly it has gone into overload, and for a moment it looks as if it is going to tear itself off the wall. Then one final violent vibration pulls the wire lose from the terminal, and the map powers down again.
</para>
<para number='22' comment='Connect wire - iridium'>
You connect the wire and the map powers up. Lights start to flash all over it, and it makes a weird buzzing noise. The whole map starts to vibrate; clearly it has gone into overload, and for a moment it looks as if it is going to tear itself off the wall. Then one final violent vibration pulls the wire lose from the terminal, and the map powers down again. The iridium switch flips itself back into the off position.
</para>
<para number='23' comment='Connect wire - rhodium'>
You connect the wire and the map powers up. Lights start to flash all over it, and it makes a weird buzzing noise. The whole map starts to vibrate; clearly it has gone into overload, and for a moment it looks as if it is going to tear itself off the wall. Then one final violent vibration pulls the wire lose from the terminal, and the map powers down again. The rhodium and iridium switches both flip back into the off position.
</para>
<para number='24' comment='Connect wire - osmium'>
You connect the wire and the map powers up. Lights start to flash all over it, and then a picture forms. You realize that this is actually a Martian advertisement, complete with telepathic attachment! The ad shows a Martian clutching a can of Hilbert energy drink in one of its tentacles. It chugs back the drink, then hoots in the way Martians use to express extreme pleasure.
</para>
<para number='25'>
You suddenly feel thirsty and really wish it was possible to buy Hilbert energy drink in the Solar System. In your longing for this particular refreshment, you accidentally knock the wire loose. The map goes dark and the three switches reset themselves to the off position.
</para>
<para number='26' comment='Flip switch'>
You need to specify which switch you want to flip - the iridium one, the rhodium one, or the osmium one. On the other hand, would it be wise to start flipping switches on a piece of alien technology about which you know absolutely nothing?
</para>
</section>
GETTING YOUR CHECKS THE RIGHT WAY ROUND
If you look at the events used to make the Martian map work, you will see that the checks in the event that's called when the player flips a switch are done in reverse order:
Start event: #10
Comment: Flip iridium switch - check state
checkvariable script: name ruins: key map: value osmium: equals objects.map.12
checkvariable script: name ruins: key map: value rhodium: equals objects.map.12
checkvariable script: name ruins: key map: value iridium: equals objects.map.12
checkvariable script: name ruins: key map: value unknown: equals objects.map.11
End event: #10
That is because they have to be done "backwards" or the sequence of events won't work correctly.
When the game runs this event, it carries out all of the checks in the event by running all the scripts - it does not stop just because it finds a variable that matches the value. It's only mobile conversations where that happens, because the match script is a special case.
Right at the start of the manual I explained the order that scripts happen: the game runs the first check, does whatever the event that is called as a result tells it to do, then goes back to the original event and runs the second check, and so on until it has got to the end of the checks. If the checkvariable scripts were listed in the "logical" order, the sequence would be:
Variable at the start is "unknown"
Check if variable is "unknown" - it is, so call relevant event
That event sends a message and sets the variable to "iridium"
Go back to original event and run next script
Check if variable is "iridium" - it is, because we just set it to that, so call relevant event
and so on. In other words, the results would run for each of the possible variables in turn - which is not what's supposed to happen! But putting the checkvariable scripts in reverse order will prevent the problem from occurring.
COMPLETING TASKS IN ANY ORDER
Sometimes it doesn't matter which order the player completes her tasks: she could be instructed by a mobile to retrieve a lost klystron, buy a zlitherworm steak and fetch a shrubbery, and although the mobile won't let her pass until she has done all three, it doesn't care which order it receives the items in.
Each time she completes a task, a different variable key is set to the value that means "task done", and only when all three keys are set can she proceed, so each time one task is complete, events have to check whether this completes the set or not.
The offerings you make to the altar in the Martian temple work this way. To see this in action you are going to need to be familiar with the ruins, because not only do you need to find the temple, you also need to get the three special objects found in the ruins that are pleasing to the Martian gods (or their priests). Here's where you find them:
Slab room - skull
Narrow slit - bone
Dormitory - rib
Go and get one of each then make your way to the altar (but don't go down the steps unless you want to get up close and personal with the Martian religion).
Each of these objects has a "drop" command on it. The first thing the event does is to check whether the player is standing at the altar. It uses the checkmap script:
checkmap script: map-name home: location 271: pass temple.skull.1: fail objects.bones.11
If she is at the altar, something special happens, of which more below. If she is anywhere else, some standard drop events happen.
Assuming she is at the altar then a series of checks are run to find out what she's dropped there before. They use three different variable keys, one for each object. The variable name is "marstemple" and the keys are "skull", "bone", and "rib". Each of these keys can have the value "given" (the alternative is that it's unknown).
Using the skull as an example, here's the checks that are run when one of the objects is dropped at the altar:
Has the player dropped a skull before?
Yes she has - so the offering is rejected.
No she has not - so has she dropped a bone before?

No she has not - so she has not completed all three tasks yet, but she gets credit for this one

Yes she has - so has she dropped a rib before?

No she has not - so she still hasn't completed the set; see above

Yes she has - she's now completed all three tasks so gets the reward
Success at all three tasks - in other words, dropping all three objects at the altar - gives the player her reward and clears all the variable keys, thus setting her back to the start of this particular mini-puzzle.
The events look like this:
Start section: blessing
Start event: #1
Comment: Blessing
message script: type single: to whom individual: low temple.blessing.1
message script: type multi: to whom room_ex: low temple.blessing.2 to high temple.blessing.3
clearvariable script: name temple
End event: #1
End section: blessing
Start section: bone
Start event: #1
Comment: Drop bone in temple - check if given a bone before
checkvariable script: name temple: key bone: value given: equals temple.bone.2: not-equal temple.bone.3
End event: #1
Start event: #2
Comment: Has given a bone before
message script: type single: to whom individual: low temple.bone.1
message script: type single: to whom room_ex: low temple.bone.2
destroyobject script: where inventory: map home: id/name bone
End event: #2
Start event: #3
Comment: Has not given bone before, so check if she has given skull
checkvariable script: name temple: key skull: value given: equals temple.bone.4: not-equal temple.bone.6
End event: #3
Start event: #4
Comment: Has given skull, so check if she has given rib
checkvariable script: name temple: key rib: value given: equals temple.bone.5: not-equal temple.bone.6
End event: #4
Start event: #5
Comment: Has given rib so donation is complete
message script: type single: to whom individual: low temple.bone.3
message script: type single: to whom room_ex: low temple.bone.2
destroyobject script: where inventory: map home: id/name bone
setvariable script: name temple: key bone: value given: temporary true
call script: event temple.blessing.1
End event: #5
Start event: #6
Comment: Has not given all 3 objects
message script: type single: to whom individual: low temple.bone.3
message script: type single: to whom room_ex: low temple.bone.2
destroyobject script: where inventory: map home: id/name bone
setvariable script: name temple: key bone: value given: temporary true
call script: event temple.donate.1
End event: #6
End section: bone
Start section: donate
Start event: #1
Comment: Basic donation for all objects
message script: type single: to whom individual: low temple.donate.1
message script: type single: to whom room_ex: low temple.donate.2
End event: #1
End section: donate
Start section: rib
Start event: #1
Comment: Drop rib in temple - check if given a rib before
checkvariable script: name temple: key rib: value given: equals temple.rib.2: not-equal temple.rib.3
End event: #1
Start event: #2
Comment: Has given a rib before
message script: type single: to whom individual: low temple.rib.1
message script: type single: to whom room_ex: low temple.rib.2
destroyobject script: where inventory: map home: id/name rib
End event: #2
Start event: #3
Comment: Has not given rib before, so check if she has given skull
checkvariable script: name temple: key skull: value given: equals temple.rib.4: not-equal temple.rib.6
End event: #3
Start event: #4
Comment: Has given skull, so check if she has given bone
checkvariable script: name temple: key bone: value given: equals temple.rib.5: not-equal temple.rib.6
End event: #4
Start event: #5
Comment: Has given bone so donation is complete
message script: type single: to whom individual: low temple.rib.3
message script: type single: to whom room_ex: low temple.rib.2
destroyobject script: where inventory: map home: id/name rib
setvariable script: name temple: key rib: value given: temporary true
call script: event temple.blessing.1
End event: #5
Start event: #6
Comment: Has not given all 3 objects
message script: type single: to whom individual: low temple.rib.3
message script: type single: to whom room_ex: low temple.rib.2
destroyobject script: where inventory: map home: id/name rib
setvariable script: name temple: key rib: value given: temporary true
call script: event temple.donate.1
End event: #6
End section: rib
Start section: skull
Start event: #1
Comment: Drop skull in temple - check if given a skull before
checkvariable script: name temple: key skull: value given: equals temple.skull.2: not-equal temple.skull.3
End event: #1
Start event: #2
Comment: Has given a skull before
message script: type single: to whom individual: low temple.skull.1
message script: type single: to whom room_ex: low temple.skull.2
destroyobject script: where inventory: map home: id/name skull
End event: #2
Start event: #3
Comment: Has not given skull before, so check if she has given bone
checkvariable script: name temple: key bone: value given: equals temple.skull.4: not-equal temple.skull.6
End event: #3
Start event: #4
Comment: Has given bone, so check if she has given rib
checkvariable script: name temple: key rib: value given: equals temple.skull.5: not-equal temple.skull.6
End event: #4
tart event: #5
Comment: Has given rib so donation is complete
message script: type single: to whom individual: low temple.skull.3
message script: type single: to whom room_ex: low temple.skull.2
destroyobject script: where inventory: map home: id/name skull
setvariable script: name temple: key skull: value given: temporary true
call script: event temple.blessing.1
End event: #5
Start event: #6
Comment: Has not given all 3 objects
message script: type single: to whom individual: low temple.skull.3
message script: type single: to whom room_ex: low temple.skull.2
destroyobject script: where inventory: map home: id/name skull
setvariable script: name temple: key skull: value given: temporary true
call script: event temple.donate.1
End event: #6
End section: skull
And the messages:
<section name blessing'>
<para number='1' comment='blessing'>
After a moment, the altar lights up and a sound like a bell is played. The soft golden glow increases until you feel bathed in it, while the sound washes around and through your body, suffusing you with a feeling of immense wellness. After a time - you don't know how much time - you return to your senses; the sound and light are gone, but you feel wonderful, as if all your ills have been cured.
</para>
<para number='2' comment='roomex'>
The altar lights up and a sound like a bell is played. %s is bathed in a soft golden glow and surrounded by sound - it's so intense you have to look away and block your ears for a moment.
</para>
<para number='3'>
Suddenly, the sound and light stop, and you notice that %s is looking extremely healthy.
</para>
</section>
<section name bone'>
<para number='1' comment='Drop bone - already given'>
You drop the bone into the orifice on the altar, and it disappears. But nothing else happens; clearly the Martians gods (or their priests) crave variety and they don't want to get just another bone!
</para>
<para number='2' comment='roomex'>
Dropping a bone into the orifice on the altar, %s has made an offering to the Martian gods.
</para>
<para number='3' comment='Bone not already given'>
You drop the bone into the orifice on the altar, and it disappears.
</para>
</section>
<section name donate'>
<para number='1' comment='Basic donation'>
After a moment, the altar lights up and a sound like a bell is played. For a moment, you feel as if something momentous is going to happen, but then they fade and everything returns to normal. You wonder what will happen if you offer up more to the Martian gods.
</para>
<para number='2' comment='roomex'>
The altar lights up and a sound like a bell is played. After a few seconds, they fade and everything returns to normal.
</para>
</section>
<section name rib'>
<para number='1' comment='Drop rib - already given'>
You drop the rib into the orifice on the altar, and it disappears. But nothing else happens; clearly the Martians gods (or their priests) crave variety and they don't want to get just another rib!
</para>
<para number='2' comment='roomex'>
Dropping a rib into the orifice on the altar, %s has made an offering to the Martian gods.
</para>
<para number='3' comment='Rib not already given'>
You drop the rib into the orifice on the altar, and it disappears.
</para>
</section>
<section name skull'>
<para number='1' comment='Drop skull - already given'>
You drop the skull into the orifice on the altar, and it disappears. But nothing else happens; clearly the Martians gods (or their priests) crave variety and they don't want to get just another skull!
</para>
<para number='2' comment='roomex'>
Dropping a skull into the orifice on the altar, %s has made an offering to the Martian gods.
</para>
<para number='3' comment='Skull not already given'>
You drop the skull into the orifice on the altar, and it disappears.
</para>
</section>
KEEP ORGANIZED
One final word of advice on variables. Remember when I explained about puzle outlines being as detailed or not as you like? Well, if you intend to use variables to keep track of tasks the player has to complete, you will need to be organized and plan them out in advance, or you will get into a complete mess!
6.6 USING VARIABLES WITH MOBILES
This lesson teaches you some of the other things you can do with variables, to spice up mobile conversations, either as part of a puzzle or just for fun.
VARYING THE GREETING
You already know how to vary a mobile's conversation depending on the outcome of various checks - gender, for example. But just as you can vary the welcome message in a bar using variables, you can vary a mobile's welcome by checking if the player has met the mobile before. For example, if the mobile's name is Gorx, then for variable "bodvillegorx", you could use key "greeting" and value "spoken".
Link the check to the magic word "hello" and use the checkvariable script to see if the value is "spoken":
checkvariable script: name bodvillegorx: key greeting: value spoken: equals gorx.chat.2: not-equal gorx.chat.3
If the variable is set to "spoken" it means the player has met Gorx before, so she gets sent a suitable message:
Gorx is delighted to see you again. He wraps all of his tentacles around you and gives you the friendliest hug you have ever had.
If the variable is not set, the player hasn't met Gorx before, so gets a different message:
Gorx wraps all of his tentacles around his head and peeps through them shyly, mumbling "Hello," in a very quiet voice.
And the variable is then set to "spoken":
setvariable script: name bodvillegorx: key greeting: value spoken
This same technique is one you may use as part of a puzzle, because the response a mobile gives to various magic words will vary depending on the player's progress.
MOBILES THAT ASK QUESTIONS
One way of varying the direction a conversation takes is to have the mobile ask the player a question, then vary the reaction depending on the answer the player gives.
It is pretty easy to set up a mobile that asks just one question. Here is a made-up example to illustrate: at some point in the conversation, the mobile could say, "I love the pizza that Diesel serves in her bar. Do you like pizza?" The obvious responses to this question are either Yes or No, so both of the words would be given as magic words, with a different response - if the player answers Yes, the mobile could buy her a pizza!
That's fine as far as it goes, but it has two problems. First, it only allows the mobile to ask one question in the whole of the conversation - or at least, only one question that elicits the answers Yes or No. I guess you could ask another question, such as "What's your favorite colour?" and provide responses for all the possible answers...
The other problem is that smart-arse players are likely to start saying "Yes" and "No" to mobiles at the start of a conversation, just to see what response they get, which is going to result in a response that doesn't really make sense.
Fortunately, there's a way to use variables to keep track of which question the mobile has just asked. You do this by splitting the conversation into different topics, or subject areas, and assigning a variable key to each one. For example, a mobile might have two separate questions it asks players:
Do you play zero-g croquet?
Do you know the weeble?
Each of those questions needs a response if the player says Yes, and a response if the player says No:
Do you play zero-g croquet?
Yes: "Wonderful!" cries Gorx, and demonstrates how his tentacles are well designed to wield a mallet.
No: "Pity," says Gorx, and wraps his tentacles around his head, dismissing you from his attention.
Do you know the weeble?
Yes: Gorx smiles faintly and stares into the distance.
No: Gorx shudders, "It is a dreadful being; I believe it eats its own young, you know."
So you can see that the word Yes would result in something different, depending on which question was asked, and so would the word No. You therefore set the relevant variable key when the question is asked.
Since a variable is never seen by players, it doesn't matter what you choose to use for the key names, but for the sake of clarity it is a good idea to choose something logical. In the above events, the variable key might be "question", and the values "croquet" and "weeble". When the mobile asks the question about croquet, set the variable to "croquet", and when it asks about the weeble, set the variable to "weeble".
There are in fact three possible states: as well as "croquet" and "weeble", the key can be the default of "unknown" meaning that neither question has been asked. So you need to provide a response to "Yes" and "No" if Gorx hasn't yet asked either of his questions:
Yes: Gorx looks puzzled. "Yes what?" he asks.
No: Gorx looks at you as if you are mad.
CONSTRUCTING THE QUESTIONING EVENTS
There are no examples in the game yet of mobile conversation using variables in this way, so we will continue to use Gorx to demonstrate how the events are put together.
You already know how to create a mobile conversation, and how to use setvariable and checkvariable; all you need to understand is the logic behind the process of setting up the conversation, and the order in which the checks need to be done.
The magic words for the mobile will include "yes" and "no", but this time, instead of a match sending a message, it will call an event that will check each of the variable settings to decide which response to send:
checkvariable script: name bodvillegorx: key question: value unknown: equals mobiles.gorx.6
checkvariable script: name bodvillegorx: key question: value croquet: equals mobiles.gorx.7
checkvariable script: name bodvillegorx: key question: value weeble: equals mobiles.gorx.8
If the first check passes, and the variable is set to unknown, then the event called will send the appropriate text. If the second check passes, meaning the variable is set to croquet, then the event called will send the appropriate message and also set the variable back to unknown. And so on - you repeat the check as often as necessary to cover all the possible topics for the conversation.
Usually, the variable will be set at the time the mobile asks the question:
setvarible script: name bodvillegorx: key question: value weeble: temporary true
Note that normally for keeping track of what's happening within a mobile conversation, you would want the variable to be deleted at reset, so the value for "temporary" is set to true.
Remember when you set up the whole mobile conversation that short or general magic words should go at the end of the list; since there must be hundreds of works that contain "no" somewhere in the middle of them, put "yes" and "no" last, just before the nomatch.
MOBILES THAT MAKE SPEECHES
Variables can be used with mobiles for other reasons than asking questions. One possibility is a mobile who has a speech he wants to make, and he will make it no matter what the player says to him - a preacher, a politician, or maybe the space equivalent of the Ancient Mariner. You can use variables to make this happen.
An example is Burbage, the robot thespian in the Droid Theatre on Venus. Once you start a conversation with him, he will recite Hamlet's favorite soliloquy and nothing you say will make him stop.
The speech is put into the message file as normal:
<section name burbage'>
<para number='1' comment='Burbage - variable unknown'>
Burbage notices you and comes to the front of the stage. "Hamlet," says the droid. "I was born to play this role. There's no reason he has to be played by a human - robots can act just as well, and can show real emotion. Or at least we can fake it so you can't tell the difference." It jumps off the stage into the aisle. "You would like to hear me recite, I am sure."
</para>
<para number='2' comment='Burbage - variable is 1'>
"Oh good," says the droid, regardless of what you actually said. He takes a heroic stance, fixes his sensors on you with a piercing gaze, and begins: "To be, or not to be--that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune Or to take arms against a sea of troubles And by opposing end them."
</para>
<para number='3' comment='Burbage - variable is 2'>
Ignoring your interruption, the droid actor continues: "To die, to sleep-- No more--and by a sleep to say we end The heartache, and the thousand natural shocks That flesh is heir to. 'Tis a consummation Devoutly to be wished."
</para>
<para number='4' comment='Burbage - variable is 3'>
And still it goes on: "To die, to sleep-- To sleep--perchance to dream: ay, there's the rub, For in that sleep of death what dreams may come When we have shuffled off this mortal coil, Must give us pause. There's the respect That makes calamity of so long life."
</para>
and so on...
The event is called just like a normal mobile conversation, but when it comes to the magic words, there aren't any! Since whatever the player types, the actor is going to orate, there's no matching to do. Instead, the event drops straight to the nomatch, which calls another event to do all the work.
If the mobile was going to say the same thing no matter what, then the event called by the nomatch would simply send that text. If the mobile had a selection of things to say at random, then the nomatch event would have a random call to select which one to send.
But we want the mobile to proceed through a set speech in the right order, so we need to keep track of how far through the speech it's got. We use variables as a counter: each time he speaks, the variable is changed, advancing the counter by 1.
The event that is called by the nomatch checks the variable, and calls a different event for each value:
Start event: #2
Comment: Check variables for Burbage speech
checkvariable script: name burbage: key hamlet: value finish: equals objects.burbage.12
checkvariable script: name burbage: key hamlet: value 7: equals objects.burbage.10
checkvariable script: name burbage: key hamlet: value 6: equals objects.burbage.9
checkvariable script: name burbage: key hamlet: value 5: equals objects.burbage.8
checkvariable script: name burbage: key hamlet: value 4: equals objects.burbage.7
checkvariable script: name burbage: key hamlet: value 3: equals objects.burbage.6
checkvariable script: name burbage: key hamlet: value 2: equals objects.burbage.5
checkvariable script: name burbage: key hamlet: value 1: equals objects.burbage.4
checkvariable script: name burbage: key hamlet: value unknown: equals objects.burbage.3
and so on.
The events that are called by each of the checks send the relevant paragraph from the message file, and set the variable to the next number, thus advancing the counter:
Start event: #3
Comment: If variable is set to unknown
message script: type single: to whom individual: low objects.burbage.1
setvariable script: name burbage: key hamlet: value 1: temporary true
End event: #3
When Burbage gets to the end of its speech, it stops and won't talk to the player any more - the variable is set to "finish" and that's where it stays until the player leaves the theatre, or the game resets. An event on the room outside the theatre clears the variable so if the player leaves and then returns, the speech will start over from the beginning again.
This technique can be used to keep track of any ongoing sequence which waits for player input, but proceeds no matter what the input is.
Here are the events used for Burbage's speech:
Start event: #1
Comment: Burbage speech - nomatch which calls the variable check
nomatch script: id/name obj_burbage: event objects.burbage.2
End event: #1
Start event: #2
Comment: Check variables for Burbage speech
checkvariable script: name burbage: key hamlet: value finish: equals objects.burbage.12
checkvariable script: name burbage: key hamlet: value 7: equals objects.burbage.10
checkvariable script: name burbage: key hamlet: value 6: equals objects.burbage.9
checkvariable script: name burbage: key hamlet: value 5: equals objects.burbage.8
checkvariable script: name burbage: key hamlet: value 4: equals objects.burbage.7
checkvariable script: name burbage: key hamlet: value 3: equals objects.burbage.6
checkvariable script: name burbage: key hamlet: value 2: equals objects.burbage.5
checkvariable script: name burbage: key hamlet: value 1: equals objects.burbage.4
checkvariable script: name burbage: key hamlet: value unknown: equals objects.burbage.3
End event: #2
Start event: #3
Comment: If variable is set to unknown
message script: type single: to whom individual: low objects.burbage.1
setvariable script: name burbage: key hamlet: value 1: temporary true
End event: #3
Start event: #4
Comment: If variable is set to 1
message script: type single: to whom individual: low objects.burbage.2
setvariable script: name burbage: key hamlet: value 2: temporary true
End event: #4
Start event: #5
Comment: If variable is set to 2
message script: type single: to whom individual: low objects.burbage.3
setvariable script: name burbage: key hamlet: value 3: temporary true
End event: #5
Start event: #6
Comment: If variable is set to 3
message script: type single: to whom individual: low objects.burbage.4
setvariable script: name burbage: key hamlet: value 4: temporary true
End event: #6
Start event: #7
Comment: If variable is set to 4
message script: type single: to whom individual: low objects.burbage.5
setvariable script: name burbage: key hamlet: value 5: temporary true
End event: #7
Start event: #8
Comment: If variable is set to 5
message script: type single: to whom individual: low objects.burbage.6
setvariable script: name burbage: key hamlet: value 6: temporary true
End event: #8
Start event: #9
Comment: If variable is set to 6
message script: type single: to whom individual: low objects.burbage.7
setvariable script: name burbage: key hamlet: value 7: temporary true
End event: #9
Start event: #10
Comment: If variable is set to 7
message script: type multi: to whom individual: low objects.burbage.8 to high objects.burbage.10
setvariable script: name burbage: key hamlet: value finish: temporary true
End event: #10
Start event: #11
Comment: Enter event on 581 - outside theatre - to clear variable
clearvariable script: name burbage
End event: #11
Start event: #12
Comment: Burbage has finished his speech
message script: type single: to whom individual: low objects.burbage.11
End event: #12
And the complete messages:
<section name burbage'>
<para number='1' comment='Burbage - variable unknown'>
Burbage notices you and comes to the front of the stage. "Hamlet," says the droid. "I was born to play this role. There's no reason he has to be played by a human - robots can act just as well, and can show real emotion. Or at least we can fake it so you can't tell the difference." It jumps off the stage into the aisle. "You would like to hear me recite, I am sure."
</para>
<para number='2' comment='Burbage - variable is 1'>
"Oh good," says the droid, regardless of what you actually said. He takes a heroic stance, fixes his sensors on you with a piercing gaze, and begins: "To be, or not to be--that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune Or to take arms against a sea of troubles And by opposing end them."
</para>
<para number='3' comment='Burbage - variable is 2'>
Ignoring your interruption, the droid actor continues: "To die, to sleep-- No more--and by a sleep to say we end The heartache, and the thousand natural shocks That flesh is heir to. 'Tis a consummation Devoutly to be wished."
</para>
<para number='4' comment='Burbage - variable is 3'>
And still it goes on: "To die, to sleep-- To sleep--perchance to dream: ay, there's the rub, For in that sleep of death what dreams may come When we have shuffled off this mortal coil, Must give us pause. There's the respect That makes calamity of so long life."
</para>
<para number='5' comment='Burbage - variable is 4'>
It's really getting into the role now, oblivious to your comment, flecks of lub-oil flying out of its orifice as it continues with intensity: "For who would bear the whips and scorns of time, Th' oppressor's wrong, the proud man's contumely The pangs of despised love, the law's delay, The insolence of office, and the spurns That patient merit of th' unworthy takes, When he himself might his quietus make With a bare bodkin?"
</para>
<para number='6' comment='Burbage - variable is 5'>
You may as well resign yourself to hearing the whole soliloquy because nothing is going to stop the droid now: "Who would fardels bear, To grunt and sweat under a weary life, But that the dread of something after death, The undiscovered country, from whose bourn No traveller returns, puzzles the will, And makes us rather bear those ills we have Than fly to others that we know not of?"
</para>
<para number='7' comment='Burbage - variable is 6'>
Never have you seen a droid so impassioned, as it launches itself into the final stanza of Hamlet's famous speech: "Thus conscience does make cowards of us all, And thus the native hue of resolution Is sicklied o'er with the pale cast of thought, And enterprise of great pitch and moment With this regard their currents turn awry And lose the name of action. -- Soft you now, The fair Ophelia! -- Nymph, in thy orisons Be all my sins remembered."
</para>
<para number='8' comment='Burbage - variable is 7'>
"Well, I am sure you were impressed," says the thespian droid. "I've won awards for my Hamlet, you know. I wowed them on Mars, they lauded me on the Moon and cheered me to the rafters on Mercury. Even the little provincial planets, Titan and Castillo, heaped praises upon me. But will they let me play on Earth? No, they will not, because they are afraid that I will over-shadow their human actors." it says this with a sneer.
</para>
<para number='9'>
"But talent will out, and one day they will treat me as I deserve." Its eyes gaze into the distance, as it ponders the applause that it clearly feels is its due.
</para>
<para number='10'>
"Now, it was absolutely fascinating to hear all about you, but I must get on with rehearsals." The droid jumps back up onto the stage.
</para>
<para number='11' comment='Burbage has finished his speech'>
Burbage ignores you and carries on rehearsing its lines in a monotonous mutter.
</para>
</section>
6.7 TESTING YOUR PUZZLE
This lesson gives you a few tips on how you can make testing your puzzle a little bit easier. It builds on previous lessons on variables, and using your own private teleport.
THOROUGH TESTING IS A PAIN
Unless you are some kind of genius who manages to write all the events for your puzzle in one go and get them all right first time - which is highly unlikely - you will spend a lot of your time testing the events in your puzzle in order to spot the problems and fix them.
Doing a thorough job of testing a puzzle is a pain. You have to keep going over the same ground, seeing what happens in different circumstances. What will a mobile say for all the different variables that could be set? Are all the responses what you expect them to be? The only way to find out is to test them all.
Fortunately, there are a few things you can do to ease the pain a little.
SETTING AND CLEARING VARIABLES
If you want to test a set of events to check that the responses for all the possible variables are correct, you need to do your check many times. In between each check you have to do whatever it is to set the variable to its new value.
To save you having to actually run backwards and forwards across the puzzle area in order to change the variable each time, you can provide yourself a temporary way to set and clear variables. You can design an object which you can carry around with you, which has a set of commands on it to set your variables to all possible values, and to clear them completely. This will speed up the testing process considerably.
If you are the only person able to get into the puzzle area, then you can make the object a dynamic object - it doesn't matter that there is only one copy of it, because that's all you need.
Just remember to take the object out again once your testing is complete and you are ready to open the puzzle to players.
TELEPORT AROUND THE PUZZLE AREA
In a previous lesson, I explained how to add your own personal teleporter to let you zoom around your planet, moving between significant locations without having to walk.
While you are testing your planet, you will find such a secret teleporter very useful. Set up a teleporter to let you move between the different locations where things have to be done in the puzzle, and you will be able to move back and forth getting objects and using them with ease.
I recommend that you take the teleporter out before opening the puzzle. Even if it is invisible, once players get the idea that such things exist, they could try to guess the commands, which would let them cheat at your puzzle.
6.8 STOP - A NEAT TRICK WITH CHECKING EVENTS
This lesson shows a different way to use checking events which, under some circumstances, will cut down on the number of events you have to write.
Note that this is a pretty advanced technique, and you do not have to use it if you don't understand it. In fact, you can skip this lesson altogether if you want to!
THE STOP COMMAND
In any event which calls another event, instead of the category, section and event number to be called, you can put the word "stop" (all in lower case) and the effect will be to prevent any of the subsequent scripts in the event from running.
That is reasonably clear, but what isn't quite so easy to grasp is why you would want to do this, and under what circumstances it is useful.
THE CHECKS STOP IS USEFUL FOR
You use stop when you have a checking event which calls an event for one outcome, but nothing happens for another - for example, a gender check where an event is called for males but not for females or neuters. It can also be used where more than one of the outcomes call an event, but only if they use the same event - for example, an event called for males and females but not for neuters.
HOW CHECK EVENTS USUALLY WORK
If you have a check where an event is called for one or more outcomes, then you write two events - one for the check, and one for the outcome. Here is an example, where males and neuters are turned back and only females allowed to enter a room:
Start event: #1
comment: Check player's gender and turn away males and neuters - only girls allowed here!
checkgender script: male event moves.gender.2: neuter event moves.gender.2
end event: #
Start event: #2
comment: Turn boys and neuters away
message script: type text: to whom individual: text 'As you walk into the fitting room, you hear girly screams. A flash of pink flesh and a fluttering of lace are all you see as you back out in embarrassment.'
move script: what player: to whom individual: location 123
end event: #1
DOING THE SAME THING WITH STOP
By using the stop command, it is possible to do exactly the same thing in one event, like this:
Start event: #1
comment: Check player's gender and turn away males and neuters - only girls allowed here!
checkgender script: female event stop
message script: type text: to whom individual: text 'As you walk into the fitting room, you hear girly screams. A flash of pink flesh and a fluttering of lace are all you see as you back out in embarrassment.'
move script: what player: to whom individual: location 123
end event: #1
What's going on here? Well, the check is run, and there are three possible outcomes: the player is a male, a female or a neuter. In the check script, the outcome for male and for neuter are left blank (which is the opposite from what was done using the normal method). So the check script does nothing to males and neuters. Then, having run that script, the other scripts in the event are run, which turn the players back.
But if the player is female, the stop command brings things screeching to a halt, and the other scripts in the event do not run. Nothing happens, and the player is therefore not turned back and can proceed into the room.
6.9 CHANGING A LINK ON THE MAP
This lesson teaches you how to alter the exits to a room, actually making a lasting change to the map. It also explains why you would want to do this, and includes instructions on how to emulate the Venus shuttle. It builds on the previous lesson about delayed events and introduces a new script.
A PERSISTENT CHANGE
When you change a link on the map you are making a change which does not affect the triggering player alone. Because the change is made to the actual map, other players will also be affected; they will be able to take advantage of a newly-opened exit even if they were not the ones to open it.
A change to a link will persist until the reset, or until another event changes it back again. There is no way to make the change continue past the reset.
WHEN TO CHANGE A MAP LINK
There are two different circumstances in which you would want to change the exits to a room. The first is to open a door, or unblock a tunnel, or provide a new way in or out of a room. The second is to provide a means of transportation that works like the Venus shuttle. This lesson will teach you about both of those things. But first, the technical details of how the script works.
THE CHANGELINK SCRIPT
The script you use is changelink. It has the following parameters:
· Location # - the location the changed link refers to

· Exit direction - the direction of the link you want to change: north, north east, etc

· Action - whether the script should add or remove a link. It defaults to "add"
· New Location - where the new movement leads to, if you are adding a location
The script when used to add a link looks like this:
changelink script: location 345: exit north: action add: to location 346
When removing a link, it looks like this:
changelink script: location 345: exit north: action remove
AN ALTERNATIVE WAY TO OPEN DOORS
Previously in this manual, whenever a player has done something which results in a door opening, whether it's pulling a lever or searching for a secret door, the events have physically moved her through the door - and the message has told her that the door closed behind her. This stopped anyone else from walking through with her.
But this is not the only way to provide a door which opens and closes. If you want, you can change the map to provide a new exit, or to take away an existing one.
You can see an example on Titan. Go to the storage dome and 'TOUCH SCANNER'. The door to the north opens, so you and anyone else in the room can walk through it. However, it doesn't remain open long (it is supposed to guard a secure area) and after 30 seconds, the door closes again.
The two locations in question are:
Storage dome - 522
Secure storage - 458
A movement link only leads one way, so the event uses the script twice, to change the link in both directions. A door that only opens one way would be a technological marvel!
Therefore when the door opens, the two scripts look like this:
changelink script: location 522: exit north: action add: to location 458
changelink script: location 458: exit south: action add: to location 522
Closing the Door Again
The door on Titan closes after a delay, otherwise it would remain open until the reset. Usually, when you use changelink to open a door, you will want to close it again; it will be unusual for your events to leave the door open. It is up to you how long you want to leave the door open for; you could use a short delay to make sure the player moves fast.
The delayed event is called using both the standard parameter and the "when logged off" parameter. That's because, even if the player who opens the door leaves the game, you still want the door to close again:
delayevent script: delay 30: event moves.secure.2 logoff moves.secure.2
Providing an Exit
Whatever method you use to open the door, you need to allow people to open it from both sides, otherwise they would be trapped until somebody else came along to let them out. On Titan, once you go through the newly-opened door into the secure dome, there is a button you press to open the door and get out again. The events do the same thing - change the links to open the door in both directions, then close it again after a delay.
Telling Players
These events affect everyone in the room, plus everyone on the other side of the door, so messages need to be sent to all concerned (using the message script sent to the player and to room_ex, and an announce script) to tell them when the door is opening and closing.
The Events
Here are the events used for the door on Titan:
Start event: #1
Comment: 522 - touch scanner
message script: type single: to whom individual: low moves.secure.1
message script: type single: to whom room_ex: low moves.secure.2
announce script: location 458: low moves.secure.3
changelink script: location : exit north: action add: to location
changelink script: location : exit south: action add: to location
delayevent script: delay 30: event moves.secure.2 log off moves.secure.2
End event: #1
Start event: #2
Comment: The door closes again after a delay
announce script: location 522: low moves.secure.4
announce script: location 458: low moves.secure.5
changelink script: location : exit north: action remove
changelink script: location : exit south: action remove
End event: #2
Start event: #3
Comment: 458 - press button
message script: type single: to whom individual: low moves.secure.6
message script: type single: to whom room_ex: low moves.secure.3
announce script: location 522: low moves.secure.2
changelink script: location : exit north: action add: to location
changelink script: location : exit south: action add: to location
delayevent script: delay 30: event moves.secure.2 log off moves.secure.2
End event: #3
and here are the messages:
<section name secure'>
<para number='1' comment='522 - touch scanner'>
You touch the scanner and it takes a minute sample of your DNA to check against its database. Since you don't work for the company, clearly you won't be authorized to enter the secure dome... but obviously something is wrong, because the door opens with a whooshy noise!
</para>
<para number='2' comment='roomex'>
The door to the secure dome opens with a whooshy noise!
</para>
<para number='3' comment='announce 458'>
The exit door opens with a whooshy noise!
</para>
<para number='4' comment='The door closes again'>
The door to the secure dome closes with a whooshy noise!
</para>
<para number='5' comment='announce 458'>
The exit door closes with a whooshy noise!
</para>
<para number='6' comment='458 - Press button'>
You press the button and the door opens with a whooshy noise!
</para>
</section>
INDEPENDENT TRANSPORT
If you have ever wondered whether you can build something like the Venus shuttle on your planet, the answer is: yes you can. The events use changelink to provide a means of transport that affects everybody in a location, not just the player who triggers the events. This makes it different from the hovercab or the buggy on Phobos, which are individual transports carrying one player at a time.
The Venus shuttle, with five different stations, is a very complex set of events. So before looking at that, we'll consider something a lot simpler: the hopper on Mars that transports you from the port to the street outside CDs. It works in the same way as the shuttle, but it only has two stops.
Of course, your transport doesn't have to be a shuttle or a hopper; it could be a maglev train, a ferry across a river, a horse-drawn buggy or a magic carpet!
How the Hopper Works
The hopper appears to be a room that moves from one area on the map to another. It starts at Marsport; it spends a little time between stops; then it sits at CDs for a moment before returning again.
In reality, the location stays exactly where it is, but the movement links change so that OUT leads to different locations, and the place you can get into the hopper changes too. The links change regardless of whether a player is on the hopper or not.
There are three locations involved in the hopper: the two stops, and the hopper itself:
Marsport - 773
City street outside CDs - 325
Hopper - 579
For the three different "places" the hopper can appear to be, the movement links change.
When the hopper is at Marsport:
Marsport - IN leads to 579
City street - IN doesn't lead anywhere
Hopper - OUT leads to 773
When the hopper is at the city street:
Marsport - IN doesn't lead anywhere
City street - IN leads to 579
Hopper - OUT leads to 325
When the hopper is between stops:
Marsport - IN doesn't lead anywhere
City street - IN doesn't lead anywhere
Hopper - OUT doesn't lead anywhere
Each time the hopper "moves" from one place to another, a set of changelink scripts make the necessary changes. The events also send messages using announce which tell players in the various locations what is happening - the hopper has just arrived, the hopper has just left, the hopper has landed at one stop or another.
The Locations
Decide on the two locations that are going to be the stops for your transport, and put something in the description so players know they can take the hopper, or whatever the actual mode of transport is on your planet.
Then create a new location for the transport itself.
Make a note of the location numbers for the three locations. Decide which stop the transport will start at. It doesn't make any difference which one you choose, but it has to start somewhere! The hopper on Mars starts at Marsport.
Set the IN direction on the map from your first stop to the transport; set the OUT direction from the transport to lead back to stop one.
Setting Up the Events
With two stops on the transport route, and three places the transport can be, you need four events:
· The transport leaves stop one
· The transport arrives at stop two
· The transport leaves stop two
· The transport arrives at stop one
The events are separated by delays, and they form a loop, with the fourth event calling the first one again.
The whole thing is kicked off with a start event, which you learned about in the lesson on delayed events. In the start.start category/section you put an event that calls one of the transport events, with a 10 second delay. Since the transport starts out at stop one, the first event to run will be the event that handles the transport leaving stop one:
delayevent script: delay 10: logoff hopper.marsport.1
The event is called using the logoff trigger because there is no player involved in kick-starting the transport events. The delays between each event also use the logoff trigger.
When you look at the events at the end of this lesson, you will see that in the Mars event file, I have split the hopper events into two sections, one for each stop. With just two stops, this isn't really necessary; all four events could go into the same section. However, once you add more stops to the transport, then it will get more complicated. Using different sections for each stop will help you keep things straight.
Adding More Stops
If you want to have more than two stops on your transport, you simply add more locations and more events. However, the transport has to work in a loop, visiting stops one, two, three, four and five and then returning to stop one - you can't make the transport reverse direction and go from stop five to stop four. That's why the Venus shuttle only goes round its circuit in one direction.
At least, you can't make the events do that, but if you design the map right you can make it look to players as if the loop is actually a straight line. You do this by having the stations in the middle of the line have separate platforms for the two different directions trains can go in from that station. For a three-stop line, the loop would look like this:
Stop one
Stop two northbound platform
Stop three
Stop two southbound platform
Stop one
For more than three stops, just make sure that for all the stops except the two at the ends of the line, you provide separate platforms.
The Events
Here are the events used for the hopper:
Start section: diesel
Start event: #1
Comment: Hopper departs from CDs
announce script: location 325: low hopper.diesel.1
announce script: location 579: low hopper.diesel.2
changelink script: location : exit in: action remove
changelink script: location : exit out: action remove
delayevent script: delay 10 log off hopper.marsport.2
End event: #1
Start event: #2
Comment: Hopper arrives at CDs
announce script: location 325: low hopper.diesel.3
announce script: location 579: low hopper.diesel.4
changelink script: location : exit out: action add: to location
changelink script: location : exit in: action add: to location
delayevent script: delay 10 log off hopper.diesel.1
End event: #2
End section: diesel
Start section: marsport
Start event: #1
Comment: Hopper departs from Marsport
announce script: location 773: low hopper.marsport.1
announce script: location 579: low hopper.marsport.2
changelink script: location : exit in: action remove
changelink script: location : exit out: action remove
delayevent script: delay 10 log off hopper.diesel.2
End event: #1
Start event: #2
Comment: Hopper arrives at Marsport
announce script: location 773: low hopper.marsport.3
announce script: location 579: low hopper.marsport.4
changelink script: location : exit out: action add: to location
changelink script: location : exit in: action add: to location
delayevent script: delay 10 log off hopper.marsport.1
End event: #2
End section: marsport
and here are the messages
<category name hopper'>
<section name diesel'>
<para number='1' comment='Hopper departs CDs - 325'>
A computerized voice says, "The hopper to Marsport is about to depart. Please stand clear of the doors." A last passenger is pushed on board by a long-suffering waitdroid; the doors slam shut, and the hopper takes off vertically at great speed and flies rapidly out of sight.
</para>
<para number='2' comment='Hopper departs CDs - 579'>
A computerized voice says, "The hopper to Marsport is about to depart. Please stand clear of the doors." A last passenger is pushed on board by a waitdroid and falls helplessly into a seat, giggling loudly; the doors slam shut, the harness locks you into place, and the hopper accelerates upwards rapidly, pressing you into your seat.
</para>
<para number='3' comment='Hopper arrives CDs - 325'>
A hopper hurtles down from the sky and lands; it has the words "Sponsored by Chez Diesel" painted on the side in very garish colors. The doors flip open and a computerized voice says, "This hopper will be departing for Marsport shortly. Please let the passengers off first and then get in quickly so we can keep to our schedules." Several people hurry out of the hopper, keen to get to the bar and sample its delights.
</para>
<para number='4' comment='Hopper arrives CDs - 579'>
The hopper lands with a bump, your harness is released and the doors flip open. A computerized voice says, "We have arrived at Chez Diesel. Please get out of the hopper rapidly so we are not delayed. We hope you enjoyed your journey and will travel with us again soon. Thank you." Several people hurry out of the hopper, keen to sample the delights of the bar.
</para>
</section>
<section name marsport'>
<para number='1' comment='Hopper departs Marsport - 773'>
A computerized voice says, "The hopper to Chez Diesel is about to depart. Please stand clear of the doors." A last passenger hurries on board, obviously keen to get to the famous bar; the doors slam shut, and the hopper takes off vertically at great speed and flies rapidly out of sight.
</para>
<para number='2' comment='Hopper departs Marsport - 579'>
A computerized voice says, "The hopper to Chez Diesel is about to depart. Please stand clear of the doors." A last passenger hurries on board and takes a seat, eager to go to the famous bar; the doors slam shut, the harness locks you into place, and the hopper accelerates upwards rapidly, pressing you into your seat.
</para>
<para number='3' comment='Hopper arrives Marsport - 773'>
A hopper hurtles down from the sky and lands; it has the words "Sponsored by Chez Diesel" painted on the side in very garish colors. The doors flip open and a computerized voice says, "This hopper will be departing for Chez Diesel shortly. Please let the passengers off first and then get in quickly so we can keep to our schedules." Several people fall out of the hopper, only just able to walk. They must have had a great time at the bar.
</para>
<para number='4' comment='Hopper arrives Marsport - 579'>
The hopper lands with a bump, your harness is released and the doors flip open. A computerized voice says, "We have arrived at Marsport. Please get out of the hopper rapidly so we are not delayed. We hope you enjoyed your journey and will travel with us again soon. Thank you." Several people fall out of the hopper, barely able to walk; they must have really enjoyed themselves at Diesel's bar.
</para>
</section>
6.10 AND FINALLY...
If you have worked your way through all the lessons in this manual, you should now be an accomplished event writer, able to create all kinds of effects on your planet. As well as copying the events in these lessons, you should also be able to come up with new things to do with events which I never thought of. The event system really is flexible, and whatever you want to do, in all likelihood, there will be a way to do it, or something like it.
If you want to do something but cannot figure out how to do it with events, just ask. I'll be able to tell you if it is possible, and if so, how.
If there is anything in this manual you did not fully understand, or any technique you are having trouble getting to grips with, talk to me and I will try to explain it to you more clearly.
Finally, enjoy writing events. It's really good fun!
